
Scripting Languages

1

Scripting Languages (prehistory)

•  Scripting languages have always been important in computer
systems
–  They are the glue that ties the different elements of the

system together
–  Their origins go back to the days of card-based operating

systems
•  JCL (OS360 JCL)
•  GEORGE II, GEORGE III

–  And they were much used in minicomputer operating
systems

•  Data General’s AOS
•  Unix

2

Scripting Languages (history)
•  Scripting languages originate in systems which were used to

join together programs (or tasks)
•  Unix and other 1980’s operating systems introduced powerful

commands
–  And scripting languages could put these together to produce

quite powerful tools quickly and easily.
–  Shell scripting is still much used particularly by system

administrators.
•  Later, the concept of scripting began to be used to describe

inputs to programs that interpreted their input to produce desired
results
–  So one might consider scripting to be a command language

for an interpreter program: application-specific languages
•  But there’s no definition of scripting that really distinguishes

them from mainstream programming languages.
•  See http://en.wikipedia.org/wiki/Scripting_language

3

An alternative view
•  Scripting is about producing simple very-high-level-languages

that are friendly to the programmer who has has a life.
•  Modern sophisticated HLLS

–  Java, C++, C#, etc. are extremely complex
–  (they have a nasty tendency to get bigger and bigger as

designers add more and more useful facilities, and interface
components, and bells and whistles, …)

–  Take a long time to learn to use (but are wonderful when you
really understand them).

•  Scripting languages are relatively simple, and often allow users
–  Who are not necessarily C.Eng programmers

•  … to do complex things
•  Hence: very high level programming systems
•  See http://www.softpanorama.org/People/Scripting_giants/

scripting_languages_as_vhll.shtml

4

Scripting now
•  There are many scripting languages:

–  Python, perl, R, javascript, PHP, …
•  Some scripting languages are used primarily in web systems.

–  Some are self-standing languages. However, others are
embedded in HTML and used to enhance web pages.

•  Here, we shall mainly look at how they can be used with the web.
–  N.B. This is not their only area of use.

•  See Matlab, for example. Or Octave, or R, …

5

6

Overview
•  Some core features of programming languages:

1.  Basic (built-in) types.
2.  Strings (and string handling including pattern matching)
3.  Data structures (associative arrays, but also abstract

data types).
4.  Control structures.
5.  Modular programming.
6.  Type regime.
7.  Operating environment.

What is client-side and server-side?
•  Any machine can play the role of either a client or a server

–  You could even have a machine being both

•  Some languages, e.g. Javascript, are said to be client-side.
–  Run on the user’s browser/web client

•  Other languages, e.g. PHP, are said to be server-side.

–  Run on the server that is delivering content to the user

7

Client Requesting a
Web Page

Web Server & Client
to the Database Server

Database Server

1 Role (Client) 2 Roles (Client & Server) 1 Role (Server)

Servers
•  Two important examples are:

–  Web Servers
–  Database Servers

•  Some of these machines may be powerful computers dedicated
to the task, i.e Database server

•  A web server is a machine holding and delivering HTML pages
that can be accessed by remote (client) machines over the
Internet.

8

Refresher on Web Dynamics

•  Static Web Model

•  You (the client) send a request to the server for a web page.
The server looks up the web page using part of the URL you
have sent it, then returns the HTML page which your browser
subsequently displays on your machine.

9

Server Browser
Request

Reply
File

System

More on Web Dynamics

•  Let us now consider a more dynamic model.

–  You (the client) send a request to the server and it
dynamically determines the HTML that is to be returned.

–  The dynamics of the reply is achieved through extending the
web server with a program (script) that does some data
processing and creates HTML output based on the data you
sent (e.g. contents of a form).

–  The process of generating the HTML response is performed
server-side.

10

Server-side scripting

•  Dynamic Web Model
–  One approach is the Common Gateway Interface (CGI)

where we have a separate program that can be executed.

11

Server Browser
Request

Reply
File

System

CGI
Program

Other
Programs

Server-side scripting
•  Dynamic Web Model

–  An alternative is to have extra code in the HTML that can be
executed on the server to determine the HTML that is to be
returned.

–  That is how PHP works.

12

 Server Browser
Request

Reply
File

System

Other
Programs

Client-Side Scripting
•  The other (complementary) approach is to do the work on the

client machine.
–  Again we have extra code in the HTML, but now it is

executed by the user’s browser (i.e. client-side).
•  Most common client side script is Javascript.

–  An example of its use is when a web page has a form. We

can use Javascript to validate the input data client-side
before it is sent to a server.

•  If we do the validation on the client, this reduces the work that
the server has to do and reduces the time taken to respond to
the user.

•  HTML5 essentially includes Javascript elements to enhance its
power.

13

Client-Side Scripting

•  Javascript can also be used to create dynamic web page
content. For example:

–  We could change the content based on the fact that you
visited the web page before.

–  Time of day.
–  JavaScript popup menus.

14

Javascript
•  Both Javascript and PHP are embedded within HTML

code. Here is some Javascript, available at:

http://www.cs.stir.ac.uk/courses/CSC9Y4/examples/y1.html

•  (see also http://www.cs.stir.ac.uk/~lss/CSC941/javascript/main.html)

<html>
<head>
 <title>A First Program in JavaScript</title>
</head>
<body>
 <h1>Dynamic generation</h1>
 <script language = "JavaScript">
 document.writeln("<p>Welcome to
JavaScript Programming!
</p>");

 </script>
</body>
</html>

15

Javascript and PHP
•  And here is some PHP held in:

http://www.cs.stir.ac.uk/courses/CSC9Y4/examples/y1.php

<html>
<head>
 <title>A First Program in PHP</title>
</head>
<body>
 <h1>Dynamic generation</h1>

 <?php
 echo "<p>Welcome to PHP Programming</p>”;
 ?>

</body>
</html>

16

Client and server
•  Note that we have HTML in which we have an embedded script

that is to be executed.

•  There are clear similarities both in terms of the syntax and in
how they are used.

•  However, there is one important difference:
–  the PHP script is executed on the web server
–  the Javascript is executed by the browser on the client’s

machine.

•  The page with Javascript goes in an ordinary xx.html file while
the page with PHP goes in an xx.php file.

17

Viewing source
•  When we view the source of the Javascript example, we see the

code written on the slide.
–  That is because that is the HTML that is handled by the

browser.
–  With the PHP example, on the other hand, the PHP is

executed on the server and the result of that execution is
sent to the browser.

–  Hence, when we view the source for the server-side
executed web page, we do not see any of the PHP code.

18

Another Javascript Example
Javascript is often used to create pop ups as in the
following example held in:

www.cs.stir.ac.uk/courses/CSC9Y4/examples/y2.html

<html>
<head><title>An alert</title></head>
<body>
 <h1>Pop up example</h1>
 <script language = “JavaScript”>
 window.alert(“Welcome
 to\nJavaScript\nProgramming!”);
 </script>
</body>
</html>

19

Alert box
• 

20

Server-side processing
•  The following is the standard use of server-side processing:

–  Our browser is sent a static HTML page that contains a form.
We type information into a textbox and press the submit
button to send the information off to the server.

–  The server dynamically creates a new HTML page whose
content depends on our input and returns this to us.

–  Search engines, for example, work in this way.

21

The form

•  Let us look at how this would be done in PHP. Suppose
that the original web page contains a form as in:

•  www.cs.stir.ac.uk/courses/CSC9Y4/examples/y3.html

–  We have a textfield and a submit button.

–  An action field tells us where the PHP file is held that
should receive the contents of the form.

22

The HTML code for a simple form
<html>
<head>
<title>Processing a form</title>
</head>
<body>
<h1>Processing a form</h1>
<form
action="http://www.cs.stir.ac.uk/courses/CSC9Y4/examples/form.php”
method="post”
>

What is your name? <input type="text" name="myname">

<input value="Submit name" type="submit">

</form>
</body>
</html>

23

Execution
•  If we type the name Jimmy into the text box and press the

submit button then the following URL is sent:

http://www.cs.stir.ac.uk/courses/CSC9Y4/examples/form.php?myname=Jimmy

–  This causes the PHP program held in file form.php to be
executed with the myname parameter having the value
Jimmy.

–  Let us now look at the contents of the PHP file.

24

PHP program
<html>
<head>
 <title>Hello</title>
</head>
<body>
 <h1>
 <?php
 $name = $_POST["myname"];
 echo "Hello ";
 echo $name;
 ?>
 </h1>
</body>
</html>

25

PHP
•  The value of the myname parameter is extracted from an array

of Strings called $_POST and is saved in $name.
–  Note that we can access this array using a string label rather

than an index number

•  We then output a message that depends on the string that was
sent. Hence a new web page is sent back that displays the
string:

Hello Jimmy

26

The form
Let us now look at how this would be done using CGI and Perl.
http://www.cs.stir.ac.uk/courses/CSC9Y4/examples/y4.html

The original HTML is very similar although now the action field tells
us where the CGI program is held.

<form action =
"http://www.cs.stir.ac.uk/cgi-bin/CSC9Y4/simple">

 What is your name? <input Name = "myname">
 <p>
 <input Type = submit Value = "Submit name">
 </p>

</form>

27

Execution
Again we type the name Jimmy into the text box and the following
URL is sent:

http://www.cs.stir.ac.uk/cgi-bin/CSC9Y4/simple?myname=Jimmy

• This causes the CGI program held in file simple to be called with
the myname parameter having the value Jimmy.

–  The CGI program is held in a special folder.

• Here is a possible Perl program to deal with this. It creates a new
web page that displays the string:

Hello Jimmy

28

Perl
#!/usr/bin/perl
use CGI ":standard";
$name = param("myname");
print <<FirstPart;
Content-type: text/html
 <html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 <h1>Hello
FirstPart
print $name;
print <<Remaining;
 </h1>
 </body>
 </html>
Remaining

29

Perl
•  The first line tells the system the file is in Perl and the second

brings in the Perl CGI library.
–  The param operation extracts the value of the myname

parameter which is saved in $name.
•  We could now do lots of Perl processing.
•  The rest of the program consists of three print statements.

–  Note the strange bracketing convention (here-document):

print <<SomeLabel;
…
SomeLabel

–  treats the parts between the brackets as a doubly-quoted
string.

30

CGI and Perl
•  The big difference is that with PHP, the code fragments are

embedded in the HTML.

•  With Perl, we have a stand-alone program and it uses print
statements to generate the HTML.
–  As Perl is an ordinary programming language, it can be used

for lots of tasks other than generating web pages.

31

Accessing databases
•  These simple examples have shown how information can be

sent from the client to the server and how the server can
dynamically create a web page that is to be returned.
–  In practice, the server will do a lot more processing.
–  Typically, the server will access a database and will either

update the database or retrieve information from it. That
information is then used in the creation of the dynamic web
page.

32

