UNIT-2
DISTRIBUTED SYSTEMS

Communication: Layered Protocols, Lower-Level Protocols, Transport Protocols, Higher-Level Protocols,
Remote Procedure Call: Basic RPC Operation, Parameter Passing. Extended RPC Models, Remote Object
Invocation: Distributed Objects, Binding a Client to an Object; Static verses Dynamic Remote Method
Invocations, Parameter Passing, Message Oriented. Communication: Persistence and synchronicity in
Communication, Message Oriented Transient Communication, and Message-Oriented’ Persistent
Communication, Stream Oriented Communication: Support for Continuous Media, Streams and Quality
of Service, Stream Synchronization.

PROTOCOLS
Protocol= Set of Rules for how computers communicate with each other.

PROTOCOLS TYPES
1. Lower level Protocols (Device to Device). 2. Higher Level Protocols (Program to Program)
The lowest protocol always deals with "low-level”, a. FTP: File Transfer protocol.
physical interaction of the hardware. Every higher b. SMTP: simple mail transfer protocol.
layer adds more features. ¢. HTTP: Hyper Text Transfer Protocol.
a. IP (Internet Protocol) (The Address of the d. Network Layer chooses best path from sender
Machine)). to receiver by routing.

b. TCP (Transmission Control Protocol) (Proof of
Delivery, rules or reassembling partitioned
messages)).

c. Implementation in physical layer and data link
layer of the stack. Group data bits into frames and
adds a pattern called checksums at either end of
frame.

Layers in the OSI model, they can be grouped into three areas:

e High-level Protocols (layers 5, 6 and 7 - Session, Presentation, and Application) - how the data
is presented, displayed, and summarized for the user - and in the reverse direction, how the
user prepared data is assembled into meaningful data structures (high-level protocols).

e Maedium-level Protocols (Layers 3 and 4 - Network and Transport) - how the data is assembled
into packets and frames and how error checking and flow control is implemented - and in the
reverse direction, how the received packets and frames are assembled into structures such as
files and databases (medium-level protocols)

e Low-level Protocols (Layers 1 and 2 - Physical and Data Link) - how the data is converted into
electrical pulses of one's and zero's (bits) and sent across cables or the physical medium, and in
the reverse direction, how the electrical pulses are taken off the cable and converted to ones
and zeros.

http://www.infocellar.com/networks/osi-model.htm
https://en.wikipedia.org/wiki/List of network protocols (OSI model)

Wisdom Materials

https://www.wisdommaterials.com/
http://www.infocellar.com/networks/osi-model.htm
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)

UNIT-2
DISTRIBUTED SYSTEMS

Source Host Destination Host

Application Application

Messages of 4

-— _—
l Streams

Transport Transpart

Datagrams -
+— (UDPor ————*

segments ([TCP)
Intarnet Internet

Fs
+— [P Datagrams ———»
.

MNetirork Metwork
Interface Interface

F

Metwork Frames — =

r,_

w

MNetwork Hardware

.

0SI Model

Data unit Layer Function

7.Application | Network processto application

Data 6. Presentation Data representation, encryption and decryption
Host
layers
5. Session Interhost communication
Segments 4. Transport End-to-end connections and reliability, Flow control
Packet 3.Network Path determination and logical addressing
Media z
Frame 2. Data Link Physical addressing
layers
Bit 1. Physical Media, signal and binary transmission

Table 1: OSI Reference Model for Protocol Stacks

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2

DISTRIBUTED SYSTEMS

Internet address structure, showing field sizes in bits

Al 7 - 24 —_—l-

Class A: | 0 | Network 1D l Host ID |

- Ja— 1§ ———

Class B: | 1 | OI Network 1D Host ID |

—_——— ——

Class C: I 1 I 1 I 0 I Network ID Host ID |

- 28 Lt

Class D (multicast): | 1 | 1 I 1 | Ol Multicast address |

— 27 —

Class E (reserved): | 1 | 1 | 1 | 1 | Dl unused |
Osl TCP

Application Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Transport Layer

Network Layer

Internet Layer

Data link Layer

Network Access Layer

Physical Layer

TCP Model

Reference Layer

4

Application
Layer -

Host-to-Host
Transport Layer

INnternetveork
Layer

MNetworlke Access e
Layer

Furnction
Dreals with application programs using the
nebwork
Offers services for users to communi cate over a
nebwork
Responsible for providing end-to-end data
integrty through a highhly reliable communication
sernice
Responsible for routing messages through
internetworks using devices such as gateway and
router
o A gatewsay is a computer that has two network
adapter cards, one for accepting the network
packets from one networlk and another for
routing these packets to a different network
o Arouter is a dedicated hardware device that
routes packets from one network to a different
nebwork
Defines the ransmission of a frame over a
nebwork
Exchanges the data between a computer and the
physical netvwork
Delvers data between two dewvices on the same
nebwork

Wisdom Materials

https://www.wisdommaterials.com/

U

NIT-2

DISTRIBUTED SYSTEMS

Network Topology

Host
A

Application,

!

Transporl:_‘

!

Internet

!

Data Flow

process-to-process

Internet

r |

Internet

t

Host

— Router —Router — =

I
I

Application
Transport

Internet

l]

Link Link Link Link
L Fibar, j
Ethernet Satellite, Ethernet
etc.
Name Host Network File E-Mail & WwWwW & Inter-
System Config Mgmt Transfer | |News Gopher active
™ | DNS | RFC822 | Telnet |
= BOOTP SNMP FTP { MIME HTTP
o -SI."ITP r
2 [File Com-
o Sharing POP | mands
= DHCP RMON TFTP IMAP Gapher
| NFS | [Tune | IRC
Transport User Datagram Protocol Transmission Control Protocol
P (UDP) (TCP)
IP Support IP Routing
| IP NAT | Protocols Protocols
Internet Internet Protocol | IPSec | Icw:g:ncprﬂ:“’ e,
(IP/IPv4, IPvE) GGP, HELLO,
- - IGRP, EIGRP,
Mobile Neighbor BGP, EGP
1P Discovery (ND)
Address Resolution Reverse Address Resolution
Protocol (ARP) Protocol (RARP)
Network Serial Line Interface Point-to-Point Protocol (LANAWLANMWWAN
Interface Protocol (SLIP) (PPP) Hardware Drivers)

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

APPLICATION LAYER

TRANSPORT LAYER
INTERNET LAYER

NETWORK ACCESS
LAYER

Domain Name System (DNS)

It is used for naming computers and network services that is organized into a hierarchy

of domains. DNS naming is used in TCP/IP networks, such as the Internet, to locate computers
and services through user-friendly names.

DMS server data
host-a.example. microsoft.com, e 192 .1565.1.20

what i= the address for
host-a. example. microsoft, com?
et =
L[] Lo _ N
host-a.example.microsoft.com =
DS client 192.1658.1.20 DMNS server

Network File System (NFS)
It allows a user on a client computer to access files over a computer network much like
local storage is accessed.

Bootstrap Protocol (BOOTP)
It automatically assigns an IP address to network devices from a configuration server.
The BOOTP was originally defined in RFC 951.

Dynamic Host Configuration Protocol (DHCP)
It automatically assign an IP address to a computer from a defined range of numbers (i.e., a
scope) configured for a given network.

Differences between BOOTP and DHCP

¢ BOOTP supports a limited number of client configuration parameters called vendor
extensions, while DHCP supports a larger and extensible set of client configuration
parameters called options.

o BOOTP uses a two-phase bootstrap configuration process in which clients contact
BOOTP servers to perform address determination and boot file name selection, and
clients contact Trivial File Transfer Protocol (TFTP) servers to perform file transfer of
their boot image. DHCP uses a single-phase boot configuration process whereby a
DHCP client negotiates with a DHCP server to determine its IP address and obtain any
other initial configuration details it needs for network operation.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

¢ BOOTP clients do not rebind or renew configuration with the BOOTP server except
when the system restarts, while DHCP clients do not require a system restart to rebind
or renew configuration with the DHCP server. Instead, clients automatically enter the
Rebinding state at set timed intervals to renew their leased address allocation with the
DHCP server. This process occurs in the background and is transparent to the user.

Simple Network Management Protocol (SNMP)
It is used for collecting information from, and configuring, network devices, such as servers,
printers, hubs, switches, and routers on an Internet Protocol (IP) network.

Status Information SHNMP Agents

Software Version
IP Address _
Avaliele Hrd Disk Spoce Windons
Open Files Server 2003-based
ARP Table Computer

e

SMMP
Manager Router
wiring Hub

Remote Monitoring (RMON)

It is a standard specification that facilitates the monitoring of network operational activities
through the use of remote devices known as monitors or probes. RMON assists network
administrators (NA) with efficient network infrastructure control and management.

File Transfer Protocol (FTP)
It is used to transfer computer files between a client and server on a computer network.

Trivial File Transfer Protocol (TFTP)
It is used for transferring files that is simpler to use than the File Transfer Protocol (FTP) but
less capable. It is used where user authentication and directory visibility are not required.

Request for Comments (RFC)

It is a type of publication from the Internet Engineering Task Force (IETF) and the Internet
Society (ISOC), the principal technical development and standards-setting bodies for the
Internet.

Simple Mail Transfer Protocol (SMTP)
It is used for electronic mail (email) transmission.

Post Office Protocol (POP)
It is used by local e-mail clients to retrieve e-mail from a remote server over a TCP/IP
connection.

IMAP (Internet Message Access Protocol)

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

It is a standard email protocol that stores email messages on a mail server, but allows the end
user to view and manipulate the messages as though they were stored locally on the end user's
computing device(s).

Network News Transfer Protocol (NNTP)
It is an application protocol used for transporting Usenet news articles (netnews) between news
servers and for reading and posting articles by end user client applications.

Hypertext Transfer Protocol (HTTP)

It is an application protocol for distributed, collaborative, hypermedia information

systems. HTTP is the foundation of data communication for the World Wide Web. Hypertext is
structured text that uses logical links (hyperlinks) between nodes containing text.

Gopher protocol (TCP/IP application layer)
It is designed for distributing, searching, and retrieving documents over the Internet.

Telnet (TCP/IP protocol)
It is a user command for accessing remote computers. Through Telnet, an administrator or
another user can access someone else's computer remotely.

Internet Relay Chat Protocol (IRCP)

It is an application layer protocol that facilitates communication in the form of text. The chat
process works on a client/server networking model. IRC clients are computer programs that a
user can install on their system.

User Datagram Protocol (UDP)

It is simplest Transport Layer communication protocol available of the TCP/IP protocol suite. It
involves minimum amount of communication mechanism. UDP is said to be an unreliable
transport protocol but it uses IP services which provides best effort delivery mechanism.

Transmission Control Protocol (TCP)

It is a core protocol of the Internet protocol suite. It originated in the initial network
implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is
commonly referred to as TCP/IP.

IP Nat
It enables private IP networks that use unregistered IP addresses to connect to the
Internet. NAT operates on a router, usually connecting two networks together, and translates
the private (not globally unique) addresses in the internal network into legal addresses, before
packets are forwarded to another network.

Private Network--->Use unregistered IP Address---2>Internet.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Routing Information Protocol (RIP)

It is one of the oldest distance-vector routing protocols which employ the hop count as a
routing metric. RIP prevents routing loops by implementing limit on the number of hops allowed
in a path from source to destination.

Each rip router maintains a routing table which is a list of all the destinations networks it knows
how to reach along with the distance to that destination.

Open Shortest Path First (OSPF)

It uses a link state routing (LSR) algorithm and falls into the group of interior routing protocols,
operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC
2328 (1998) for IPv4.

Address resolution protocol (ARP(IP----Hardware Address))

Itis a protocol used to map IP network addresses to the hardware addresses used by a data
link protocol. It below the network layer as a part of the interface between the OSI network and
OSl link layer.

Reverse Address Resolution Protocol (RARP (Hardware Address ----IP))

It is an obsolete computer networking protocol used by a client computer to request its
Internet Protocol(IPv4) address from a computer network, when all it has available is its link
layer or hardware address, such as a MAC address.

Serial Line Internet Protocol (SLIP)
It is an encapsulation of the Internet Protocol designed to work over serial ports and modem
connections. It is documented in RFC 1055.

P [iP I
IP packets IP packets

RY Yo

Continuous
byle stream

EEEEENENE =
Serial connection .
(e.g.. modem)

IP-capable

Dial-in node
computer * de

Point-to-Point Protocol (PPP)
It is used to establish a direct connection between two nodes. It can provide connection
authentication, transmission encryption (using ECP, RFC 1968), and compression.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2

DISTRIBUTED SYSTEMS

v
Link:
Diead

3

P‘ Establishmert |

Link

Fhase

Remote Procedure Call (RPC)
It is a protocol that one program can use to request a service from a program located in another
computer in a network without having to understand network details. (A procedure call or

function call or a subroutine call.) RPC uses the client/server model.

Na

Is there &
successfully
establishad
link?

desirad?

Link

N A
Tarmination “_7 Netw ork-Layer -‘—'H

Phase Protocol Phase

F 3

‘l’es"

authentication

authentication
successful?

Authertication
Phasze

No

Client Server
Application Application | HTTP POP3
L1 et B
Client Stub Semer Stub ubP

[Ea]

|EIientHun-Time Library | |ServerHun-Time LiI:urar_l,l| IP
FERn R
Tranzport Ethernet protocol
11

TCP/IP - model

Application

Transport

Internet

Network interface)

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Basic RPC Operation

Client machine Server machine
Client process S e Server process
3 pr:::nedure © Implementation 6. Stub makes
of add local call to "add™
Server stub .
—{ K=add({) +— ; ~ dd
|- Client stub
proc: ‘add" = s proc: “add" Stub K
i vakly 2. Stub builds int:__val() S Lopacks
int: __val()) message [int.__val() | message
proc: "add” 4.
Client OS imf vai(i) Server OS ﬁ:r::gn?es;sage
I _ int: _val() J I to server stub

3. Message is sent
across the network

The steps involved in a doing a remote computation through RPC.

RPC Mechanism

Interface Definition Language

IDL Compiler

5) Exception?
4) Invalid arguments?
3) Invalid procedure?

marshaling

Retransmission

e (Dispatcher)
acknpwledgments (2) Unauthorized client?
Routing

encryption (1) Intelligible messages?

CSS434 RMI 12

Wisdom Materials

10

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Transparency ot RPC

O A transparent RPC is one in which the local and
remote procedure calls are indistinguishable.

O Types of transparencies:
" Syntactic transparency

A remote procedure call should have exactly the same syntax as a
local procedure call.

B Semantic transparency

The semantics of a remote procedure call are identical to those of a
local procedure call.

O Syntactic transparency is not an issue but semantic
transparency is difficult.

RPC Semantics

* Principle of RPC between a client and server program [Birrell&Nelson 1984]

Client Wait for result

v

Call remote
procedure

N\

Return
from call

Request

Server Call local procedure ~ 1ime —»
and return results

(@)

Wisdom Materials

11

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Parameter-Passing Semantics

« Call by Value
» Most PRCs take this semantics.

m « Voluminous data incurs copying overhead.
« Call by Reference

= Passing pointers and references are
meaningless.

= Then, how about object-based systems?
« The value of a variable is a reference
to an object
« Call by object reference
- « Additional remote object invocations
« Call by visit: all related objects moved
to a server every RPC.

« Call by move: all related objects moved
and left to a server upon the first RPC.

Parameter Passing in RPC

* Parameter marshalling: Packing parameters into a message
* Passing by value
- int, char
* Passing by reference
- Arrays
* |IBM mainframes use EBCDIC character code, whereas IBM personal
computers use ASCII
— |f machines are different, characters can be interpreted differently

Wisdom Materials

12

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

RPC Models

* Synchronous RPC (Inherently standard model)
* Asynchronous RPC
— Request-reply behavior often not needed

— Server can reply as soon as request is received and execute procedure
later

* Deferred-synchronous RPC
— Use two asynchronous RPCs

— Client needs a reply but can’t wait for it; server sends reply via another
asynchronous RPC

* One-way RPC
— Client does not even wait for an ACK from the server

— Limitation: Reliability not guaranteed (Client does not know if
procedure was executed by the server).

Asynchronous RPC

Client Wait for result Client Wait for acceptance
7 R % N
Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —» Server Call local procedure Time —»

and return results
(@) (b)

a) The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC

Deferred Synchronous RPC

* A client and server interacting through two asynchronous RPCs

Wait for Interrupt client
acceptance
Client -__p.___ \
/ \
Call remote :Return ’ et
rom ca eturn
pigsedins results Acknowledge
Accept
Request request
SO O s s e ————————— e e Y
Call local procedure G Time —»

Call client with
one-way RPC

Wisdom Materials

13

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Conventional Procedure Call

a) Parameter passing in a local b) The stack while the called
procedure call: The stack procedure is active
before the call to read

Count = read(fd, buf, nbytes)
Stack peinter

I

Main program's / Main program's
local variables / local variables

*!' | _bytes
buf

. fd
return address
read's local
variables

(a) (b)

Possible Issues
* Calling and called procedures run on different
machines
* They execute in different address spaces

* Parameters and results have to be passed, it can
be complicated when the machines are not
identical.

— How do you represent integers — big-endian little-
endian

* Either or both machines can crash and each of
the possible failures causes different problems.

Wisdom Materials

14

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Client and Server Stubs

* Client makes procedure call (just like a local
procedure call) to the client stub

* Server is written as a standard procedure

* Stubs take care of packaging arguments and
sending messages

* Packaging parameters is called marshalling

* Stub compiler generates stub automatically from
specs in an Interface Definition Language (IDL)
— Simplifies programmer task

Steps of a Remote Procedure Call

Client procedure calls client stub in normal way
Client stub builds message, calls local OS
Client's OS sends message to remote OS
Remote OS gives message to server stub
Server stub unpacks parameters, calls server
Server does work, returns result to the stub
Server stub packs it in message, calls local OS
Server's OS sends message to client's OS
Client's OS gives message to client stub

10 Stub unpacks result, returns to client

© 0N UE LN

Wisdom Materials

15

https://www.wisdommaterials.com/

UNI

T-2

DISTRIBUTED SYSTEMS

Example of an RPC

No message passing at all is visible to the programmer.

Client machine

Server machine

Client process . Server process
1. Client call to -
procedure Implementation 6. Stub makes
of add local call to "add"
Server stub
e 0'.
= 8dct) L Client stub \\
proc: “add® proc: “add"
int: val() 2. Stub builds it vai() 5. Stub unpacks
int: val()) message int: _ val()) message
A
: proc: "add. 4. Server OS
S - G b hands message
- e ve) P to server stub
3. Message is sent
across the network

* Problem: different machines have different data

formats

— Intel: little endian, SPARC: big endian
* Solution: use a standard representation

— Example: external data representation (XDR)

* Client stub marshals the parameters to the runtime
library for transmission

* Server stub unmarshals the parameters and call the

server

* The reply goes back by the reverse route

Wisdom Materials

16

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Binding
* Problem: How does a client locate a server?
— Use Bindings
* Server

— Export server interface during initialization

— Send name, version no, unique identifier, handle
(address) to binder

* Client

— First RPC: send message to binder to import server
interface

— Binder: check to see if server has exported interface
« Return handle and unique identifier to client

Binder: Port Mapper

Server start-up: Create port

Server stub calls svc_register to register prog #, version # with local port mapper
Port mapper stores prog #, version #, and port

Client start-up: call c/nt_create to locate server port

Upon return, client can call procedures at the server

portmapper register server server

e
N\ "7/

client

client
machine

Wisdom Materials

17

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Case Study: SUNRPC

* One of the most widely used RPC systems
* Developed for use with NFS

¢ Built on top of UDP or TCP
* Multiple arguments marshaled into a single structure

* At-least-once semantics if reply received, at-least-zero semantics if no
reply. With UDP tries at-most-once

¢ Use SUN’s eXternal Data Representation (XDR)

— Big endian order for 32 bit integers, handle arbitrarily large data
structures

* XDR has been extended to become Sun RPC IDL

* Aninterface contains a program number, version number, procedure
definitionand required type definitions

Case Study: Sun RPC
Rpcgen: generating stubs

server "
> cc——> server
procedures server stub /
Q_svce
/ RPC
RPCspeciication file | Qh XDR
Q.x —> rpcgen run time
&l Q_xdrc library
Q_cintc l
cllent client stub \
application > cC)[client

Q_xdr.c: do XDR conversion

Remote Object Invocation

RMI (Remote Method Invocation) is a way that a programmer, using the Java programming
language and development environment, can write object-oriented programming in

which objects on different computers can interact in a distributed network.

Wisdom Materials

18

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Distributed objects are objects (in the sense of object-oriented programming) that are
distributed across different address spaces, either in multiple computers connected via

a network or even in different processes on the same computer, but which work together by
sharing data and invoking methods.

The main method of distributed object communication is with remote method invocation,
generally by message-passing: one object sends a message to another object in a remote
machine or process to perform some task. The results are sent back to the calling object.

Local vs. Distributed Objects

Local and distributed objects differ in many respects. Here are some of them:

1. Life cycle : Creation, migration and deletion of distributed objects is different from local
objects

2. Reference : Remote references to distributed objects are more complex than simple
pointers to memory addresses

3. Request Latency : A distributed object request is orders of magnitude slower than local
method invocation

4. Object Activation : Distributed objects may not always be available to serve an object
request at any point in time

5. Parallelism: Distributed objects may be executed in parallel.

6. Communication : There are different communication primitives available for distributed

objects requests

Failure: Distributed objects have far more points of failure than typical local objects.

Security: Distribution makes them vulnerable to attack.

© N

Binding a Client to an Object

= Object references are supported by RMI
systems
= When a process holds an object reference, it
must first bind to the reference’s object before
invoking any of its methods.
2 Binding results in a proxy being installed in the process’s
address space.
= Implicit Binding: binding is done automatically
2 The client is offered a mechanism that allows it to
directly invoke methods using only a reference to the
object.
= Explicit Binding: more transparent to the client

2 The client first calls a special function to bind to the
object and then invokes any method.

Wisdom Materials

19

https://www.wisdommaterials.com/
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Distributed_object_communication
https://en.wikipedia.org/wiki/Remote_method_invocation

UNIT-2
DISTRIBUTED SYSTEMS

Binding a Client to an Object

(a) An example of implicit binding using only global

references.

Distr_object® obj_ref; //Declare a systemwide object reference
obj_ref = ..; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(b) An example of explicit binding using global and local
references.

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ..; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

Static verses Dynamic Remote Method Invocations

« RMI is very similar to RPC.

* static invocation

— Use predefine interface definition such as in java

— If interface change- the client application must be recompiled.
* Dynamic invocation

— Compose method at runtime

— Application select at runtime which method it will invoke at a

remote object.

RMI - Remote Method Invocation, a set of protocols being developed by Sun's

JavaSoft division that enables Java objects to communicate remotely with other

Java objects. RM is a relatively simple protocol, but unlike more complex protocols
such as CORBA and DCOM, it works only with Java objects. CORBA and DCOM

are designed to support objects created in any language. 55

Wisdom Materials

20

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Remote Distributed Objects (1/2)

Data and operations encapsulated in an object

Operations are implemented as methods, and are accessible
through interfaces

Object offers only its interface to clients

Object server is responsible for a collection of objects

Client stub (proxy) implements the interface

Server skeleton handles (un)marshaling and object invocation

Client machine Server machine
o Object
Client Server
State
I Same
Client interf&;ce Method
invokes | | as object
a method
Skeleton T Interface
invokes — |
Proxy same method
at object
Client OS Server OS
| B
Network K
Marshalled invocation
is passed across network
02-19 Communication/2.3 Remote Object Invocation

Wisdom Materials

21

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

RMI

Programming Procedure

(4) Program a Client.java class
5) javac Client.java (2) Program a Server.java class

Application LLyer: Client .java Server.java

(7) Run Server with

8) Run Client with java Client

t t

interface
3 ac S :
Stub/Skeleton: st ol 1 >rl:lc Feadson o
Server_Stub.cl Server_Skel.class
(6) Invoke a rmiregistty
Remote Reference: rmirggistry [port#]
(object manager/name service)
request and result
Transport Layer: TCPAP

Message Oriented Communication
L.

Persistence and Synchronicity in
Communication
Persistence

Transient

1
2
3. Asynchronous
4

Synchronous

2. Message-Oriented Transient Communication

3.

Message-Oriented Persistence Communication

Wisdom Materials

22

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Message + Network

*Communication system 1s organized as a computer network
*Application are always executed on hosts,

*each host offer an interface to the communication system

*Each host are connected through a network of communication servers
*Which responsible for passing message between hosts

Persistence Communication

Message that has been submitted is stored by

the communication system as long as it takes
to deliver it to receiver.

Example: Mail

Persistence and Synchronicity in Communication

Messaging interface

Sending host “ Communication server

Communication server Receiving host
|/ | | ————| |Buffer independent ‘
- Routing || |of communicating Routing _.
Application “ program h?sts program Application
— A Y |
—— 1 ; /| To other (remote) Y v = 1
H !L:H:? " | communication M E‘ H'
(= = | | server o= = N |
oS 0S| ‘ S 0s ‘ \0S
| | Y
p NN \
Local buffer e et { Internetwork / N\ Local buffer

S P g Incoming message

Wisdom Materials

23

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Persistence and Synchronicity in Communication
v

. Post |7
Pony and rider A | office | < >
M v -
Post * Post |~
office

____________ p | office

st | Ptk | L
Mail stored and sorted, to office | ~._
be sent out depending on destination RS

and when pony and rider available

Transient Communication
A message 1s stored by the communication

system as long as the sending and receiving
application 1s running.
The message will be discarded if the

communication server cannot delivery the
message to destination server.

Example: Router.

Asynchronous Communication
Sender continuous 1mmediately after it has
transmitted the message.

The message 1s either stored in local buffer or at
the first communication server

Example: asynchronous - the answering machine

Wisdom Materials

24

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Asynchronous Send

o
1 =
38

Synchronous

The sender 1s blocked until its message is stored
in local buffer at the receiver end or the
message has been delivered.

bl

The strongest form of Syn Comm 1s when the
sender can only continue executing after the
receiver process the message.

Synchronous Send

Provide information
about the relative
execution points of

s —
= of the two.

sender and receiver -
[—ﬁ = [causes synchronization

Wisdom Materials

25

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Persistence and Synchronicity in Communication (3)

A sends message A sends message A stopped
and continues ?u :;Q:ged and waits until accepted running
A 1 A 4
Message is stored
)2 at B's location for _ Accepted
Time later delivery \\\ Time
T F’ v e o o
S " e “'\
. B starts and Bis not B starts and
Bis not receives running receives
funning message message
@ ()
Persistence Asynchronous Comm Persistence synchronous Comm

Persistence and Synchronicity in Communication

A sends message
and continues

____________ ¢) Transient asynchronous
A Message can be communication

sentonly if Bis
running
Time
B receives

message

©

Transient Synchronous

Send request and wait
unti received Weakest form, based on
S o .
A w{‘ message receipt.
Request | [ack The sender is blocked
sreceves | Time : .
. -, e until the message 1s
Running, but doing Process stored in receiver’s local
something else request b ff
B uffer.

The sender receive an
d) Receipt-based transient synchronous ackuowledge(recelpt) and
conmununication continue.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Persistence and Synchronicity in Communication (5)

Send request and wait until Send request
accepted ‘and wait for reply.
| 4 -~ A
A — = _k— ————————— A er —————————————————— | —
\
Request | f Request | | Accepted
is received | / Accepted _ is received | I/ _
~ { ! Time — "{ / Time
B ——=% {L_ﬁ___/-------T?‘ B — P) - - = = = - ==
Running, but doing Process Running, but doing Process
something else request something else reguest
(e) f

e) Delivery-based transient synchronous communication at
message delivery —client idle until its request has been accepted
tor further processing

f) Respomnse-based transient synchronous communication-client
waits until receives a reply from the server. Ie- client-server.

Berkeley Sockets

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection
Close Release the connection

Message-Oriented Persistence

Communication
Message queuing system/Message Oriented
Middleware
Offer intermediate-term storage capacity for
message- without requiring sender & receiver
to active

Support longer time message transfer

Wisdom Materials

27

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Message Queuing Model

— App’n communicate by inserting message in its own private queue
— Also possible the queue being shared by other App'n

— Message are guaranteed to be inserted in queue but not to receive by
receiver

— Message is forwarded over a series of communication servers

— Receiver and sender 1s independent.

Message-Queuing Model

Sender Sender Sender Sender
running running passive passive
Y Y
L A
Recener Recener Recaner Receiver
runming passive running passve
(a) (k) (e) (d)

Four combinations for loosely-coupled
communications using queues.

Wisdom Materials

28

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Message-Queuing Model

Basic mterface to a queue 1n a message-queuing system.

Primitive Meaning

Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.

Install a handler to be called when a message is put into the specified

Notify queue.

General Architecture of a Message-Queuing System (1)

The relationship between queue-level addressing and
network-level addressing.

: Look-up
Sender | transport-level Receiver
address of queue
A
Tl ! >
Queuing V/ Queus-level _ -1+ I—l Queuing
|laver ¥ .t% address N layer
¢ 5] 3 | I
Local OS ‘ Address look-up Local OS A
L database
Transport-level
TR— address

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

General Architecture of a Message
Queuing System

Message can only be put to local queues
Called as source queue
And also- message can be read from local queues

Message put in the queue will contain the destination
queues to which 1t should be transferred.

Message queuing system maintain a database of queue
names to network location(DNS)

Queues are manage by queue managers

Special queue managers that operate as routers or relay
— Forward the incoming messages to other queue managers

General Architecture of a Message-Queuing System

Use few router with the knowledge of topology
Only the router need to be updated when queues are added/deleted
Queue manager has to know only the nearest router

Sender A
Apphcation I |
ool Applhcabon
4 Recewve
queue ; '
R2 J
Mes: - - 1 -
> o \ r ”g - «>
Send queue . R —_ *
= T
- == Appiication
|
RN =g
=TT A i > .
Ly U g | Receiver B
Application
Router

The general organization of a message-queuing system with routers.

Wisdom Materials

30

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Message Broker

»Each time the new application 1s added- different message
format will introduce.

»Require the sender and receiver have the same message
format.- agree with common message format.

W Conversion are handled by special node in a queuing

network

QKnown as MESSAGE BROKER.

UPurpose — to convert the incoming message to a format that
can be understood by destination application.

Message reformatter

Message broker is an mfermediary program that translates a message ffom the formal
messaging protocol of the sender to the formal messaging protocol of the recerver i a
telecommumication network where programs communicate by exchanging formally-detined

1essages.

Source client

Message Brokers

Database with

Message broker conversion rules Destination client

v

, ,
==l :

Pyt J*’tj

/1]

eI
os Il i H BE Yos] [os
] | |

Network

Wisdom Materials

31

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Data Stream
Support for continuous media
Sequence of data unit

Isochronous Transmission mode
— Distributed multimedia system
— REfel'S as stream

Stream /2

— Simple stream — consist of only single sequence of data
— Complex stream — several related simple streams(sub stream

In telecommunications and computing . a data stream 1s a sequence of digitally encoded
colierent signals (packets of data or datapackets) used to transmut or recerve mformation that is
11 transmission.

In electronics and computer architecture . a data stream determines for which tume which data

tem 15 scheduled to enter or leave wlich port of a svstolic array. a Reconfigurable Data Path
Array or sumilar pipe network. or other processing unit or block.

Data Stream (1)

Sending process Receiving process

. |
-
J
Stream !
0s
r) I
Network
(a)

Setting up a stream between two processes across a network.

Source and sink
Source could be a process
Reading an audio file from a disk — transmit byte by byte

Sink — fetching the byte as they come in — passing them to local
audio device

Wisdom Materials

32

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Data Stream

Setting up a stream directly between two devices.

Camera
— Display
— os Stream 0s —
| p,
Network
(b)
Data Stream (3)
Stream > J Sink
A
{ Intermediate
sl node, possibly

\) with filters
/’:i\‘ A
Lower bandwidth L

An example of multicasting a stream to several receivers.
Data stream is multicast to many receivers
Filters are use to adjust the quality of incoming stream

Specifying QoS

Characteristics of the Input Service Required

smaximum data unit size (bytes) oL 0ss sensitivity (bytes)

*Token bucket rate (bytes/sec) sLoss interval (usec)

*Toke bucket size (bytes) *Burst loss sensitivity (data units)
*Maximum transmission rate *Minimum delay noticed (usec)
(bytes/sec) *Maximum delay variation (usec)

*Quality of guarantee

Wisdom Materials

33

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Specifying QoS (2)

\ tokens arrive at rate r

w token bucket
oo

packet buffer |
iN B — B

packets drain tokens to leave

packets arrive >

The principle of a token bucket algorithm.

Flow Spec

1. Loss sensitivity — acceptable loss rate

. Loss interval (usec)

. Burst loss sensitivity (data units) — how many consecutive data
unit may be lost

. Minimum delay noticed (usec)- how long the tolerable delay
before noticed by receiver

. Maximum delay variation (usec)- maximum tolerate jitter for
video and audio

. Quality of guarantee- how serious the service requirement
should be taken

Wisdom Materials

34

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

Setting up Stream
« Sender in RSVP provide flow specification
— Bandwidth, delay, jitter etc.
 The specification 1s handed over to RSVP process
that 1s colocated at the same machine as the sender

« RSVP 1s recetver-initiated QoS protocol(receiver are
required to send reservation requests along the same

path to the sender)

« Receiver may set a new parameter value(flow
specification) to the sender.

Setting Up a Stream

Sender process

RSVP-enabled host

RSVP process

4
i ' Policy
Application control
Application <> ‘
data stream } ! [
RSVP
program
A T
Local OS
B ol B DOE N
Data link layer { Admission
- control
Data link layer
data stream »| X :
S v >
Local network

Setup information to
other RSVP hosts

Reservation requests
from other RSVP hosts

Internetwork

Wisdom Materials

35

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

mHow 1T works| FSVP

Resource Reservation Protocol (RSVP) allows the sender
of multimedia traffic to set up end-to-end QosS.

Internet

o (3 nsvp path
Sender Routers Receiver

oﬂuﬂmdia os«uar'smtmrkmquests 0Rmal\nu'ﬁ)lltm'spath owrmrasewaﬁw

application on that receiver of multimedia back to sender; estab- request reaches
sender’'s PC trafTic st up RSVYP path. Eishing reservation sender, end-to-end
requests QoS Request takes exact path that states at each router QoS is established
from sender’'s multimedia trafTic will take along the way. and muitimedia
network. once RSVP is sat up. traffic is sent.

Receiver's machine

Application
Procedure that reads
two audio data units for

each video data unit \ ’—b]

|
Incoming stream *Q

\ 0S
________ ot

Network
Application tells
Receiver's machine middleware what
Miilfifisdis Conto] to do with incoming
' = icati streams
is part of middleware Application
Middleware layer —»i f[[
Incoming stream oS
Network ~—~~~""7~
Complete

Wisdom Materials

36

https://www.wisdommaterials.com/

UNIT-2
DISTRIBUTED SYSTEMS

http://slideplayer.com/slide/5179691/

Wisdom Materials

37

https://www.wisdommaterials.com/
http://slideplayer.com/slide/5179691/

	Local vs. Distributed Objects

