
DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

1

Introduction: Definition of Distributed Systems, Goals: Connecting Users and Resources, Transparency,
Openness, Scalability, Hardware Concepts: Multiprocessors, Homogeneous Multicomputer systems,
Heterogeneous Multicomputer systems, Software Concepts: Distributed Operating Systems, Network
Operating Systems, Middleware, The client-server model: Clients and Servers, Application Layering,
Client-Server Architectures.

Definition of Distributed Systems
It is a collection of independent computers/nodes/components that appear to the users of the system
as a single coherent system. Users (people or programs) think they are dealing with a single system.
It is a model in which computers on network communicate and coordinate their actions by passing
messages. The components interact with each other in order to achieve a common goal.

A computer program that runs in a distributed system is called a distributed program, and distributed
programming is the process of writing such programs. There are many alternatives for the message
passing mechanism, including pure HTTP, RPC-like connectors and message queues.

Characteristics of distributed systems
differences between various computers and the ways in which they communicate are mostly hidden
from users
users and applications can interact with a distributed system in a consistent and uniform way,
regardless of where and when interaction takes place.
distributed systems should also be relatively easy to expand or scale.
a distributed system will normally be continuously available

Note
Layers of software support heterogeneous computers and networks while offering a single-system view
- sometimes called middleware.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

2

Distributed system organized as middleware

 Four networked computers and three applications
1. Application B is distributed across computers 2 and 3.

2. Each application is offered the same interface.

3. Distributed system provides the means for components of a single distributed application to

communicate with each other, but also to let different applications communicate.
4. It also hides the differences in hardware and operating systems from each application.

Examples
1. The World Wide Web – information, resource sharing
2. Clusters, Network of workstations
3. Distributed manufacturing system (e.g., automated assembly line)
4. Network of branch office computers - Information system to handle automatic processing of orders
5. Network of embedded systems
6. New Cell processor (PlayStation 3)

Advantages Disadvantages

Economics, Speed, Inherent distribution,
Reliability, Incremental growth

Software, Network, More components to fail
Security

In parallel computing, all processors may have access to a shared memory to exchange information
between processors. In distributed computing, each processor has its own private memory (distributed
memory). Information is exchanged by passing messages between the processors.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

3

Goals
1. Connecting Users and Resources. 2. Transparency.
3. Openness. 4. Scalability.

Connecting Users and Resources (Making Resources Accessible)
1. Distributed system Make it easy for the users (and applications) to access remote resources
2. Distributed system to share them in a controlled and efficient way.

Resources - anything: printers, computers, storage facilities, data, files, Web pages, and networks, etc.
 Accessibility Issues
1. Security. 2. Unwanted communication.

Transparency
Goal - hide the fact that its processes and resources are physically distributed across multiple computers
systems should be transparent

Different forms of transparency in a distributed system (ISO, 1995).

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource is replicated

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Degree of Transparency Issues
Timing
e.g. requesting an electronic newspaper to appear in your mailbox before 7 A.M. local time, as usual,
while you are currently at the other end of the world living in a different time zone.

Synchronization
e.g. a wide-area distributed system that connects a process in San Francisco to a process in Amsterdam
limited by laws of physics - a message sent from one process to the other takes about 35 milliseconds.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

4

· It takes several hundreds of milliseconds using a computer network.
· Signal transmission is not only limited by the speed of light, but also by limited processing capacities of
the intermediate switches.

Performance
e.g. many Internet applications repeatedly try to contact a server before finally giving up. Consequently,
attempting to mask a transient server failure before trying another one may slow down the system as a
whole.

Consistency
e.g. need to guarantee that several replicas, located on different continents, need to be consistent all
the time - a single update operation may now even take seconds to complete, something that cannot
be hidden from users.
 Context Awareness
e.g. notion of location and context awareness is becoming increasingly important, it may be best to
actually expose distribution rather than trying to hide it. - consider an office worker who wants to print
a file from her notebook computer. It is better to send the print job to a busy nearby printer, rather than
to an idle one at corporate headquarters in a different country.

Limits of Possibility
Recognizing that full distribution transparency is simply impossible, we should ask ourselves whether it
is even wise to pretend that we can achieve it.

Openness
Goal: offer services according to standard rules that describe the syntax and semantics of those services.
e.g.
1. Computer networks - standard rules govern the format, contents, and meaning of messages sent and
received.
2. Distributed systems - services are specified through interfaces, which are often described in an

Interface Definition Language (IDL)

 Interface definitions written in an IDL nearly always capture only the syntax of services
3. Specify names of the available functions with types of parameters; return values, possible exceptions
that can be raised, etc.
4. Allows an arbitrary process that needs a certain interface to talk to another process that provides that
interface
5. Allows two independent parties to build completely different implementations of those interfaces,
leading to two separate distributed systems that operate in exactly the same way.

Properties of specifications
Complete - everything that is necessary to make an implementation has been specified.

Neutral
Specifications do not prescribe what an implementation should look like Lead to:

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

5

Interoperability - characterizes the extent by which two implementations of systems or components
from different manufacturers can co-exist and work together by merely relying on each other's services
as specified by a common standard.

Portability characterizes to what extent an application developed for a distributed system A can be
executed, without modification, on a different distributed system B that implements the same interfaces
as A.

Goals: an open distributed system should also be extensible. i.e.
1. be easy to configure the system out of different components (possibly from different developers).
2. be easy to add new components or replace existing ones without affecting those components that
stay in place.

Scalability
 Scalability of a system is measured with respect to:
1. Size - can easily add more users and resources to the system.
2. Geographic extent - a geographically scalable system is one in which the users and resources may lie
far apart.
3. Administrative scalability - can be easy to manage even if it spans many independent administrative
organizations.

Scalability Limitations of Size

Concept Example

Centralized services A single server for all users

Centralized data A single on-line telephone book

Centralized algorithms Doing routing based on complete information

Geographical scalability Limitations
Synchronization
 e.g. currently hard to scale existing distributed systems designed for local-area networks is that they are
based on synchronous communication.
1. A client requesting service blocks until a reply is sent back.
2. Works fine in LANs where communication between two machines is generally at worst a few hundred
microseconds.
3. In a wide-area system, inter process communication may be hundreds of milliseconds, three orders of
magnitude slower.

Unreliability of communication
1. Communication in wide-area networks is inherently unreliable and point-to-point.
2. local-area networks provide reliable communication based on broadcasting, making it much easier to
develop distributed systems. For example, consider the problem of locating a service.
a. e.g. in a local-area system, a process can broadcast a message to every machine, asking if it is running
the service it needs.
b. Only those machines that have that service respond, each providing its network address in the reply
message.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

6

c. Such a location scheme is unthinkable in a wide-area system: just imagine what would happen if we
tried to locate a service this way in the Internet.

Administrative scalability
1. How to scale a distributed system across multiple, independent administrative domains.
a. Major problem - conflicting policies with respect to resource usage (and payment), management, and
security.

Scaling Techniques
 Three techniques for scaling:
1. Hiding communication latencies. 2. Distribution. 3. Replication.

Hiding communication latencies - important to achieving geographical scalability.

1. Try to avoid waiting for responses to remote service requests.

e.g, when a service has been requested at a remote machine, an alternative to waiting for a reply from
the server is to do other useful work at the requester's side.

construct the requesting application in such a way that it uses only asynchronous communication.]
2. Reduce the overall communication

e.g. in interactive applications when a user sends a request he will generally have nothing better to do
than to wait for the answer.

move part of the computation that is normally done at the server to the client process requesting the
service.

O typical case - accessing databases using forms.

ship the code for filling in the form, and possibly checking the entries, to the client, and have the client
return a completed form - approach of shipping code is now widely supported by the Web in the form of
Java applets and JavaScript.

The difference between letting (a) a server or (b) a client check forms as they are being filled.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

7

Distribution
1. Splitting a component into smaller parts and spreading those parts across the system.
· e.g. Internet Domain Name System (DNS).
2. The DNS name space is hierarchically organized into a tree of domains, which are divided into
nonoverlapping zones
3. Names in each zone are handled by a single name server.
4. Resolving a name means returning the network address of the associated host.
e.g. the name nl.vu.cs.flits.
5. To resolve this name - first passed to the server of zone which returns the address of the server for
zone Z2, to which the rest of name, vu.cs.flits, can be handed. The server for Z2 will return the address
of the server for zone Z3, which is capable of handling the last part of the name and will return the
address of the associated host.

An example of dividing the DNS name space into zones.

·DNS is distributed across several machines, thus avoiding that a single server has to deal with all
requests for name resolution.
·Performance degradation Problems
Solution: replicate components across a distributed system

Replication
1. Increases availability
2. Helps balance the load between components leading to better performance.
3. e.g. in geographically widely-dispersed systems - a copy nearby can hide much of the communication
latency problems.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

8

Caching - special form of replication
1. Caching results in making a copy of a resource, generally in the proximity of the client accessing that
resource.
2. Caching is a decision made by the client of a resource, and not by the owner of a resource.
3. Caching happens on demand whereas replication is often planned in advance.

Issues of caching and replication - multiple copies of a resource -> modifying one copy makes that copy
different from the others -> leads to consistency problems.

Weak consistency
e.g. a cached Web document of which the validity has not been checked for the last few minutes.

Strong consistency
e.g. electronic stock exchanges and auctions.
Problem
1. An update must be immediately propagated to all other copies.
2. If two updates happen concurrently, it is often also required that each copy is updated in the same
order.
3. Generally requires some global synchronization mechanism – hard to implement in a scalable way (i.e.
speed of light
Pitfalls
False assumptions that everyone makes when developing a distributed application for the first time (by
Peter Deutsch):
 1. The network is reliable. 2. The network is secure. 3. The network is homogeneous.
 4. The topology don’t change. 5. Latency is zero. 6. Bandwidth is infinite.
 7. Transport cost is zero. 8. There is one administrator.

Hardware Concepts
1. Multiprocessors.
2. Homogeneous Multicomputer systems.
3. Heterogeneous Multicomputer systems.

Hardware Concepts
1. Characteristics which affect the behavior of software systems
2. The platform
a. the individual nodes (”computer”, ”processor”)
b. communication between two nodes
c. organization of the system (network of nodes)
3. ... and its characteristics
a. capacity of nodes
b. capacity (throughput, delay) of communication links
c. reliability of communication (and of the nodes)
4. Which ways to distribute an application are feasible

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

9

A bus-based multiprocessor
Cache memory, hit rate, coherence, write-through cache, snoopy cache

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

10

General Multicomputer Systems

Loosely connected systems Application architectures

a. Nodes: autonomous
b. communication: slow and vulnerable
c. cooperation at ”service level”

a. multiprocessor systems: parallel computation
b. multicomputer systems: distributed systems
c. (how are parallel, concurrent, and distributed
systems different?)

Software Concepts

System Description Main Goal

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

11

Distributed
Operating Systems

Tightly-coupled operating system for
multiprocessors and homogeneous multi computers

Hide and manage hardware
resources

Network Operating
Systems

Loosely-coupled operating system for
heterogeneous multi computers (LAN & WAN)

Offer local services to remote
clients

Middleware Additional layer atop of NOS implementing
general-purpose services

Provide distribution
transparency

Distributed Operating Systems
It is software over a collection of independent, networked, communicating, and physically separate
computational nodes. Each individual node holds a specific software subset of the global
aggregate operating system.

Network Operating Systems
An operating system oriented to computer networking, to allow shared file and printer access among
multiple computers in a network, to enable the sharing of data, users, groups, security, applications, and
other networking functions. Typically over a local area network (LAN), or private network.

Middleware
 It includes web servers, application servers, messaging and similar tools that support application
development and delivery. Middleware sits "in the middle" between application software that may be
working on different operating systems. The distinction between operating system and middleware
functionality is, to some extent, arbitrary. While core kernel functionality can only be provided by the
operating system itself, some functionality previously provided by separately sold middleware is now
integrated in operating systems.

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

12

The client-server model
1. Clients and Servers. 2. Application Layering. 3. Client-Server Architectures.

Client-server model
The client–server model is a distributed application structure that partitions tasks or workloads between
the providers of a resource or service, called servers, and service requesters, called clients.

Application Layering
It is a layer in the Open Systems Interconnection (OSI) seven-layer model and in the TCP/IP protocol
suite. It consists of protocols that focus on process-to-process communication across an IP network and
provides a firm communication interface and end-user services.

Open Systems Interconnection Layer Model

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

13

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

14

TCP/IP layer Model

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

15

Client-Server Architectures
Various hardware and software architectures are used for distributed computing. At a lower level, it is
necessary to interconnect multiple CPUs with some sort of network, regardless of whether that network
is printed onto a circuit board or made up of loosely coupled devices and cables. At a higher level, it is
necessary to interconnect processes running on those CPUs with some sort of communication system.
Distributed programming typically falls into one of several basic architectures: client–server, three-
tier, n-tier, or peer-to-peer; or categories: loose coupling, or tight coupling.

Client–server
Architectures where smart clients contact the server for data then format and display it to the users.
Input at the client is committed back to the server when it represents a permanent change.

Three-tier

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

UNIT-1

Wisdom Materials

16

Architectures that move the client intelligence to middle tier so that stateless clients can be used. This
simplifies application deployment. Most web applications are three-tier.

n-tier
Architectures that refer typically to web applications which further forward their requests to other
enterprise services. This type of application is the one most responsible for the success of application
servers.

Peer-to-peer
Architectures where there is no special machines that provide a service or manage the network
resources. Instead all responsibilities are uniformly divided among all machines, known as peers. Peers
can serve both as clients and as servers.

https://www.wisdommaterials.com/

