UNIT-3
DISTRIBUTED SYSTEMS

PROCESS: Threads: Introduction to Threads, Threads in Distributed Systems, Clients: user
Interfaces, Client-Side Software for Distribution Transparency, Servers: General Design Issues,
Object Servers, Software Agents: Software Agents in Distributed Systems, Agent Technology,
Naming: Naming Entities: Names, Identifiers, and Address, Name Resolution, The
Implementation of a Name System, Locating Mobile Entities: Naming verses Locating Entities,
Simple Solutions, Home-Based Approaches, Hierarchical Approaches.

PROCESS
A program under execution is called as a process.

THREAD
1. Itis a light weight program.
2. Traditional operating systems: concerned with the “local” management and scheduling of
processes.
3. Modern distributed systems: a number of other issues are of equal importance.
4. There are three main areas of study

a. Threads and virtualization within clients/servers.

b. Process and code migration.

c. Software agents.
5. Modern OSs provide “virtual processors” within which programs execute.
6. A programs execution environment is documented in the process table and assigned
a PID.
7. To achieve acceptable performance in distributed systems, relying on the OS’s idea
of a process is often not enough — finer granularity is required.

» The solution: Threading.

PROBLEMS WITH PROCESSES

1. Creating and managing processes is generally

regarded as an expensive task (fork system call).

2. Making sure all the processes peacefully co-exist on the system is not easy (as concurrency
transparency comes at a price).

3. Threads can be thought of as an “execution of a part of a program (in user-space)”.

4. Rather than make the OS responsible for concurrency transparency, it is left to the individual
application to manage the creation and scheduling of each thread.

Two Important Implications

1. Threaded applications often run faster than non-threaded applications (as context-switches
between kernel and user-space are avoided).

2. Threaded applications are harder to develop (although simple, clean designs can help here).
Additionally, the assumption is that the development environment provides a

Threads Library for developers to use (most modern environments do).

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

THREAD USAGE IN NON-DISTRIBUTED SYSTEMS

Process A Process B

S1: Switch from user space
Ll sle g S| | S3: Switch from kernel
[o space to user space
Operating system ;

S2: Switch context from
process A to process B

Context switching as the result of [PC

THREAD IMPLEMENTATION

Thread state

User space
.— Thread

R R
1

1 1 |

1 I

LA, I Lightweight process

Kernel space

LWP executing a thread

Combining kernel-level lightweight processes
and user-level threads

THREADS IN NON-DISTRIBUTED SYSTEMS

Advantages:

1. Blocking can be avoided

2. Excellent support for multi-processor systems (each running their own thread).

3. Expensive context-switches can be avoided.

4. For certain classes of application, the design and implementation is made considerably easier.

THREADS IN DISTRIBUTED SYSTEMS

1. Important characteristic: a blocking call in a thread does not result in the entire process

being blocked.

2. This leads to the key characteristic of threads within distributed systems:

“We can now express communications in the form of maintaining multiple logical connections at
the same time (as opposed to a single, sequential, blocking process).”

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS

Example: MT Clients and Servers

« Mutli-Threaded Client: to achieve acceptable levels of perceived performance, it is often

necessary to hide communications latencies.
« Consequently, a requirement exists to start communications while doing something else.
» Example: modern Web browsers.
» This leads to the notion of “truly parallel streams of data” arriving at a multi-threaded

client application.

» Although threading is useful on clients, it is much more useful in distributed systems

Servers.

« The main idea is to exploit parallelism to attain high performance.
» A typical design is to organize the server as a single “dispatcher” with multiple threaded
“workers”, as diagrammed overleaf.

MULTITHREADED SERVERS

Dispatcher thread

Request dispatched
to a worker thread
L

/ Server

7 —

Request coming in

=

A

from the network

— Worker thread

Operating system

A multithreaded server organized in a
dispatcher/worker model

MULTITHREADED SERVERS

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls

Program

Interface A

Hardware/software system A

(2)

THE ROLE OF VIRTUALIZATION IN DISTRIBUTED SYSTEMS

Program

Interface A

Implementation of
mimicking A on B

Interface B

Hardware/software system B

(b)
Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

a. General organization between a program, interface, and system
b. General organization of virtualizing system A on top of system B
ARCHITECTURES OF VIRTUAL MACHINES

There are interfaces at different levels.
An interface between the hardware and software, consisting of machine instructions
— that can be invoked by any program.
An interface between the hardware and software, consisting of machine instructions
— that can be invoked only by privileged programs, such as an operating system.
An interface consisting of system calls as offered by an operating system.
An interface consisting of library calls
— generally forming what is known as an Application Programming Interface (API).
— In many cases, the aforementioned system calls are hidden by an API.

Library functions Application
~ |
Library
System calls
|
Privileged | OPerating system General
instructions ~~4 L5 7 instructions

Hardware

Various interfaces offered by computer

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

[

I
Application I

Runtime system

Operating system

Hardware

(a)
(a) A process virtual machine, with multiple

instances of (application, runtime) combinations
THE JAVA VIRTUAL MACHINE

Java program Java API
+-| class loader |&-+-- class filss

Java
interpreter

I

v

host system
(Windows, Linux, etc.)

Applications

Operating system

Virtual machine monitor

Hardware

(b)
(b) A Virtual Machine Monitor (VMM), with multiple instances of
(applications, operating system) combinations.

TYPES OF VMM/HYPERVISORS

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Guest OS process

Excel Word Mplayer Apollon é) Host OS
O O process
Guest 0S (g
Type 2 hypervisor O
Type 1 hypervisor Host operating system

(@) (b)

(a) A type 1 hypervisor. (b) A type 2 hypervisor
VMWARE ARCHITECTURE

application application application application
guest operating guest operating guest operating
system system system
(free BSD) (Windows NT) (Windows XP)
virtual CPU virtual CPU virtual CPU
virtual memory virtual memory virtual memory
virtual devices virtual devices virtual devices
virtualization layer
, |
host operating system
(Linux)
hardware
CPU [/O devices |

More on Clients
* What’s a client?

« Definition: “A program which interacts with a human user and a remote server.”
« Typically, the user interacts with the client

via a GUI.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

» Of course, there’s more to clients than simply providing a UL. Remember the multi-
tiered levels of the Client/Server architecture from earlier ...

GENERIC CLIENT/SERVER ENVIRONMENT

or Internet

il server
workstation
{client)

Generic Client/Server Architecture
Client Workstation

Presentation services

Server
Application logic request - Application logic
(client portion) A (server portion)
response

Communications B ————E—— Communications
protocol

software . " software
interaction
Client Server
operating system operating system
Hardware platform Hardware platform

Client/Server Architecture for Database Applications

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS

Client Workstation

Presentation services

Application logic

request

Server

Database logic

Client
operating system

Hardware platform

>
. >
Database logic
response
Communications
software protocol
interaction

Communications |Database management
software system

Server operating system

Hardware platform

Role of Middleware in Client/Server Architecture

Client Workstation

Presentation services

Application logic

Middleware middleware
interaction

Communications
software protocol
interaction

Client
operating system

Hardware platform

NETWORKED USER INTERFACES
Client machine

Server
Middleware
Communications A pplication
software services

Server operating system

Hardware platform

Server machine

Local bS

Application | — » Application
i Application- X
. specific !
Middleware protocol Middleware

Loéal 0Ss

—L EeEsEEssmEsEsEme J—

Network

(a) A networked application with its own protocol

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS
Client machine Server machine
Appl. Appl.
Application-

. independent u
Middleware | protocol | Middleware
Local OS Local OS

Network
(b)

(b) A general solution to allow access

to remote applications

Example: The X Window Svstem

Application server Application server User's terminal
Window Application | | yiip interface
manager
Xlib A Xlib A
Local OS Local OS X protocol
o
_ - X kernel

Device drivers

Terminaléincludes display
keyboard, mouse, etc.)

The basic organization of the X Window System

CLIENT-SIDE SOFTWARE FOR DISTRIBUTION TRANSPARENCY

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

|

- / A /

Client side handles
request replication Replicated request

Transparent replication of a server

using a client-side solution
More on Servers
SERVER
“A process that implements a specific service on behalf of a collection of clients”. Typically,
servers are organized to do one of two things:
1. Wait. 2. Service.
... Wait ... service ... wait ... service ... wait ...

SERVERS: ITERATIVE AND CONCURRENT

1. Iterative: server handles request, then returns results to the client; any new client requests must
wait for previous request to complete

(also useful to think of this type of server as sequential).

2. Concurrent: server does not handle the request itself; a separate thread or sub-process handles
the request and returns any results to the client; the server is then free to immediately service the
next client (i.c., there’s no waiting, as service requests are processed in parallel).

SERVER “STATES”

1. Stateless servers — no information is maintained on the current “connections” to the server.
The Web is the classic example of a stateless service. As can be imagined, this type of server is
easy to implement.

2. Stateful servers — information is maintained on the current “connections” to the server.
Advanced file servers, where copies of a file can be updated “locally”, then applied to the main
server (as it knows the state of things) - more difficult to implement.

Problem: Identifying “end-points”?
« How do clients know which end-point (or port) to contact a server at?
How do they “bind” to a server?
— Statically assigned end-points (IANA).
— Dynamically assigned end-points (DCE).
— A popular variation:
» the “super-server” (inetd on UNIX).
GENERAL DESIGN ISSUES

Wisdom Materials

10

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Server machine

Client machine

2. Request
| SeVIee P server |
Client [«
—
FS
1. Ask for 8
end point Daemon

Register
end point

~T~~ End-point

table

(a)

(a) Client-to-server binding using a daemon

Server machine

Client machine

2. Continue

/_ie/rvime/_, Actual | Create
Client |l server server for
= requested
Super- [] service
1. Request server
service
(b)

(b) Client-to-server binding using a superserver

A SpeC|aI Type: Object Servers
A server tailored to support distributed objects.
« Does not provide a specific service.
« Provides a facility whereby objects can be remotely invoked
« Consequently, object servers are highly adaptable.
* “A place where objects live”.

by non-local clients.

Serwer rmachime

Object Adapter
Server wwith three obhject=s
.,
—
Obhject's sSstulks - h
(sSkelaetom) []
-
- |] [
)
[* ! '
| ©opiect adapter | | Obiect
’ Request |
cdermultiplexer

Loc=al O

E:-::! = pter I

Organization of an object server supporting different

activation policies.

Wisdom Materials

11

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS
SERVER CLUSTERS
Logical switch : Application/compute servers ! Distributed
(possibly multiple) | 1. file/database
! i system

: =

Dispatched : E i :
. request | —_—
Client requests F . i I
! | !
: } —

I 4—1»
! | S—

First tier Second tier ' Third tier

The general organization of a three-tiered server cluster

Logically a
single TCP Response S —
connection
-
Request Request °
Client 2| > Switch | (handed off) *
-
Server

The principle of TCP handoft
DISTRIBUTED SERVERS

Believes server Client 1 Knows that Cient 1
has address HA believes it is X P ikt
' Server
Believes it is APP _ -
connected to X TCP Access point '
Beli I i with address CA1 |
elieves location [MIPVE | 3
of X is CA1 1
[1P|]
Believes server Client 2 Sarver 2

has address HA

Believes it is
connected to X
Believes location with address CAZ2
of X is CAZ2

Knows that Cient 2
believes it is X

L)

L]

]

L]

]

L]

]

L)

]

]

< -
Access point]
]

i

]

i

]

i

L]

Route optimization 1n a distributed server

Wisdom Materials

'--------.-.--.-----.--.-.-.-.----------'I

Distributed server X

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

MANAGING SERVER CLUSTERS

User-assigned
virtual machines

Priviliged management
virtual machines

B
L L e L e L e Y 3 LY
o o o o o o o o o o
's) o =] I's) o I's] o o I's) o
@ @ @ @ @ @ @ @ fs) fes)
(3] o (2] (] (2] w o o o o
o o w w w w o o o o
Vserver \server Vserver Vserver Vserver

Linux enhanced operating system

Hardware

The basic organization of a PlanetlL.ab node

PlanetLab
» PlanetLab management issues:
» Nodes belong to different organizations.
Each organization should be allowed to specify who is allowed to run applications
on their nodes,
— And restrict resource usage appropriately.
Monitoring tools available assume a very specific combination of hardware and software.
— All tailored to be used within a single organization.
» Programs from different slices but running on the same node should not interfere with

each other.

> Management
authority

<\3
7
4

Slice authority

Node owner

The management relationships
between various PlanetLab entities

« Relationships between PlanetLab entities:
« A node owner puts its node under the regime of a management authority, possibly

restricting usage where appropriate.
« A management authority provides the necessary software to add a node to PlanetLab.
« Aservice provider registers itself with a management authority, trusting it to provide
well-behaving nodes.
« Aservice provider contacts a slice authority to create a slice on a collection of nodes.
« The slice authority needs to authenticate the service provider.
A node owner provides a slice creation service for a slice authority to create slices. It
essentially delegates resource management to the slice authority.
* A management authority delegates the creation of slices to a slice authority.

Wisdom Materials

13

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

PROCESS AND CODE MIGRATION
» Under certain circumstances, in addition to the usual passing of data, passing code (even
while it is executing) can greatly simplify the design of a DS.
» However, code migration can be inefficient and very costly.
» S0, why migrate code?

REASONS FOR MIGRATING CODE
» Why? Biggest single reason: better performance.
» The big idea is to move a compute-intensive task from a heavily loaded machine to a
lightly loaded machine
“on demand” and “as required”.

Example of Process Migration

Slachine 5 Mlachime L3

£

~u [] (=]

koernel

dal Helore g ralioon

Almchine 5N Mlachime L3
] =
‘\./ &

[=] [] u [] (=]]

() ATler maigraiiom

CODE MIGRATION EXAMPLES

« Moving (part of) a client to a server — processing data close to where the data resides. It is
often too expensive to transport an entire database to a client for processing, so move the
client to the data.

« Moving (part of) a server to a client —
checking data prior to submitting it to a server. The use of local error-checking (using
JavaScript) on Web forms is a good example of this type of processing. Error-check the
data close to the user, not at the server.

Wisdom Materials

14

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

“Classic” Code Migration Example
» Searching the Web by “roaming”.
» Rather than search and index the Web by requesting the transfer of each and every
document to the client for processing, the
client relocates to each site and indexes the documents it finds “in situ”. The index is then
transported from site to site, in addition to the executing process.

ANOTHER BIG ADVANTAGE: FLEXIBILITY

2. Client and server
communicate

d B

. . J:\\ 1. Client fetches code
Service-specific —
client-side code

Code repository

The principle of dynamically configuring a client to communicate
to a server. The client first fetches the necessary software, and
then invokes the server. This is a very flexible approach.

Major Disadvantage
« Security Concerns.
« “Blindly trusting that the downloaded code implements only the advertised interface
while accessing your unprotected hard-disk and does not send the juiciest parts to
heaven-knows-where may not always be such a good idea”.

CODE MIGRATION MODELS

A RUNNING PROCESS CONSISTS OF THREE “SEGMENTS”:
1. Code — instructions.

2. Resource — external references.

3. Execution — current state.

MIGRATION IN HETEROGENEOUS SYSTEMS
Three ways to handle migration (which can be combined):
1. Pushing memory pages to the new machine and resending the ones that are later modified
during the migration process.
2. Stopping the current virtual machine; migrate memory, and start the new virtual machine.
3. Letting the new virtual machine pull in new pages as needed, that is, let processes start on
the new virtual machine immediately and copy memory pages on demand.

CODE MIGRATION CHARACTERISTICS
Weak Mobility: just the code is moved — and it always restarts from its initial state.
— e.g., Java Applets.
— Comment: simple implementation, but limited applicability.
Strong Mobility: code & state is moved — and execution restarts from the next statement.

Wisdom Materials

15

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

- e.g., D’Agents.
— Comment: very powerful, but hard to implement.
» Sender-Initiated vs. Receiver-Initiated.
» Which side of the communication starts the migration?
— The machine currently executing the code (known as sender-initiated)
— The machine that will ultimately execute
the code (known as receiver-initiated).

HOW DOES THE MIGRATED CODE RUN?
» Another issue surrounds where the migrated code executes:
1. Within an existing process (possibly as a thread)
2. Within it’s own (new) process space.
« Finally, strong mobility also supports the notion of “remote cloning”: an exact copy of
the original process, but now running on a different machine.

MODELS FOR CODE MIGRATION

Execute at
Sender-initiated — target process
mobility \ Execute in
. separate process
Weak mobility Brociiteat
Receiver-initiated — target process
mobility ~~__ Execute in

separate process
Mobility mechanism

N\

Strong mobility

Migrate process
Sender-initiated _— 9

mobility =

Clone process

/N /N

o Migrate process
Receiver-initiated — 9 P

mobility =

Clone process

Alternatives for code migration

What About Resources?
« What makes code migration difficult is the requirement to migrate resources.
« Resources are the external references that a process is currently using, and includes (but
is not limited to):
— Variables, open files, network connections,
printers, databases, etc...

TYPES OF PROCESS-TO-RESOURCE BINDING

1. Strongest: Binding-by-Identifier (BI) — precisely the referenced resource, and nothing else,
has to be migrated.

2. Binding-by-Value (BV) —
weaker than Bl, but only the value of the resource need be migrated.

Wisdom Materials

16

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

3. Weakest: Binding-by-Type (BT) —
nothing is migrated, but a resource of a specific type needs to be available after migration
(e.g., a printer).
MORE RESOURCE CLASSIFICATION
» Resources are further distinguished as one of:
1. Unattached: a resource that can be moved easily from machine to machine.

2. Fastened: migration is possible, but at a high cost.
3. Fixed: a resource is bound to a specific machine or environment, and cannot be

migrated.
» Refer to following diagram for a good summary of resource-to-binding characteristics (to

find out what to do with which resource when).

MIGRATION AND LOCAL RESOURCES
Resource-to-machine binding

Unattached | Fastened Fixed
Process- = By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR

binding ' By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)
GR Establish a global systemwide reference
MV Move the resource

CP Copy the value of the resource
RB Rebind process to locally-available resource

Actions to be taken with respect to the references
to local resources when migrating code to
another machine

Migration in Heterogeneous DS’s

Push marshalled
Local stack procedure call onto

— - tions B migration stack
- opera :
! T Local
Procedure B - - > variables B
T T Return label
— b ""*-—._,__._ } (ump) to A
Call from Parameter
Ato B j Varli‘:lﬁzls . \ values for B
- ldentification
— — Return addr.
e Las from B for proc. B
- . Local
§ Parameter varlables A
Push procedure values for B
call onto program & Return label
stack Local stack to caller A
operations A
] P Parameter
- Local values for A
variables A
Procedure A Ildentification
Return addr. for proc. A
from A

Migration
Program stack
stack (marshalled
data only)

Wisdom Materials

17

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Using a migration stack: the principle of maintaining a migration stack to support migration of
an execution segment in a heterogeneous environment. Usually requires changes to the
programming language and its environment.

Overview of Code Migration in D'Agents (1)

proc factorial n {
if($n<1){retumn1;} #fac(1)=1
expr $n * [factorial [expr $n—1]] #fac(n)=n~*fac(n—1)

}
setnumber .. #tells which factorial to compute
setmachine ... #identify the target machine

agent_submit $machine —procs factorial —vars number —script {factorial $number}

agent_receive ... #receive the results (left unspecified for simplicity)

A simple example of a Tel agent in D'Agents submitting a
script to a remote machine (adapted from [Gray 95])

Overview of Code Migration in D'Agents (2)

all_users $machines
proc all_users machines {

set list™ # Create aninitially empty list
fareach m $machines { # Consider all hosts inthe setof given machines
agent_jump &m #Jumpto each host

set users [execwhao] #Execute the who command
appendlistfusers #Appendthe resultstothe list

return Flist # Return the complete listwhen done
H
setmachines ... #Initialize the set of machines to jumpto
setthis_machine # Set to the hostthat starts the agent

Create a migrating agent by submitting the scriptto this machine, fram where
#itwilljumpto allthe others in $machines.

agent_submit $this_machine —procs all_users
-vars machines
-script{all_users $machines }

agent_receive .. #receive the results (left unspecifiedfor simplicity)

An example of a Tel agent in D'Agents migrating to different
machines where it executes the UNIX who command.

Wisdom Materials

18

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Implementation Issues

5 Agents

4 TelfTk Scheme Java
interpreter | interpreter | interpreter

3 Common agent RTS

2 Server

1 TCPIP E-mail

The architecture of the D'Agents system.

Implementation Issues

Status Description
Global interpreter variables Variables needed by the interpreter of an agent
Global system variables Retum codes, error codes, error strings, etc.
Global program variables User-defined global variables in a program
Procedure definitions Definitions of scripts to be executed by an agent
Stack of commands Stack of commands currently being executed
Stack of call frames Stack of activation records, one for each running command

The parts comprising the state of an agent in D'Agents.

SOFTWARE AGENTS
« What is a software agent?
“An autonomous unit capable of performing a task in collaboration with other,
possibly remote, agents”.
« The field of Software Agents is still immature, and much disagreement exists as to how
to define what we mean by them.
« However, a number of types can be identified.

TYPES OF SOFTWARE AGENTS
1. Collaborative Agent — also known as “multi-agent systems”, which can work together to
achieve a
common goal (e.g., planning a meeting).
2. Mobile Agent — code that can relocate and continue executing on a remote machine.

Wisdom Materials

19

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS

3. Interface Agent — software with “learning abilities” (that damned MS paperclip, and the

ill-fated “bob™).

4. Information Agent — agents that are designed to collect and process geographically

dispersed data and information.

Software Agents in Distributed Systems

Property 2?::;::;?0 Description
Autonomous Yes Can act on its own
Reactive Yes Responds timelv to changes in its environment
Proactive Yes Initiates actions that affects its environment
Communicative Yes Can exchange information with users and other agents
Continuous No Has arelatively long lifespan
Mobile No Can migrate from one site to another
Adaptive No Capable of leaming

Some important properties by which different types of
agents can be distinguished.

Agent Technology — Standards

The general model of an agent platform has
been standardized by FIPA (“Foundation
for Intelligent Physical Agents”) located at http://www.fipa.org

« Specifications include:

— Agent Management Component.

— Agent Directory Service.

— Agent Communication Channel.
— Agent Communication Language.

AGENT TECHNOLOGY

Agent program | 4 Agent

Agent platform

Inter-platform

communication

!
/

| Agent's .
/ endpoint ;
Management Directory ACC
component service

I |

»
Intra-platform
communication

The general model of an agent platform
(adapted from [FIPA 1998])

Wisdom Materials

% >

20

https://www.wisdommaterials.com/
http://www.fipa.org/

UNIT-3
DISTRIBUTED SYSTEMS

AGENT COMMUNICATION LANGUAGES

Message purpose Description Message Content
INFOERM Inform that a given proposition is true Proposition
QUERY-IF Query whether a given proposition is tre Proposition
QUERY-REF CQuery for a give object Expression
CFP Ask for a proposal Proposal specifics
PROPOSE Provide a proposal Proposal
ACCEPT-PROPOSAL Tell that a given proposal 1s accepted Proposal ID
REJECT-PROPOSAL Tell that a given proposal 1s rejected Proposal ID)
REQUEST Request that an action be performed Action specification
SUBSCRIBE Subscribe to an information source Reference to source

Examples of different message types in the FIPA ACL [FIPA 1998]. giving the
purpose of a message. along with the description of the actual message content.

AGENT COMMUNICATION LANGUAGES

Field Value
Purpose INFORM
Sender max(@http://fanclub-beatrix.royalty-spotters.nl: 7239
Receiver elke@iiop://royalty-watcher.uk:5623
Language Prolog
Ontology genealogy
Content female(beatrix),parent(beatrix.juliana, bernhard)

A simple example of a FIPA ACL message sent between two
agents using Prolog to express genealogy information.

Naming Entities

A name in a distributed system is a string of bits or characters that is used to refer to an
entity

Q Types of names

» Address: an access point of an entity

Identifiers: a name that uniquely identifies an entity

An identifier refers to at most one entity

Each entity is referred to by at most one identifier

An identifier always refers to the same entity

Human-friendly names

Location-independent name: a name that is independent from its addresses

\!

= = om oy

v Vv

Wisdom Materials

21

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Name Spaces and Name Resolution

O Names are organized into name spaces

O A name space can be represented as a labeled, directed graph with two types of
nodes

> Leaf nodes and directory nodes

> Absolute vs relative path names

» Local names vs global names

O Name Resolution: the process of looking up a name

> Closure mechanism: knowing where and how to start name resolution

Name Spaces cont'd

A general naming graph with a single root node.

Data stored in n1
(e wo home - keys
n2: "elke HHV

n3; "max”
nd: "steen"

k“r\}‘l—g) "fkeys"
- "fhome/steenfkeys"

e

{ n2) (n3 nd ~ keys

Leaf node O J _’}
_bwmirc “1 mbox

Directory node |:| C} (:J "Thomelsteen/mbox"

Linking and Mounting
beia Stfj.r.ed ir.]. 2 home(,&eys

{Qﬁ:} "feys"

Ty - Data stored in nB
Leafnode [) /,/ . - "
.t\n-'mrc.'/ mbos , keys Lfkeysz:l
.
N -

Directory node I:l -
J_j O @ "fhome/steen/keys"

The concept of a symbolic link explained in a naming graph.

Wisdom Materials

22

https://www.wisdommaterials.com/

DISTRIBUTED SYSTEMS

Linking and Mounting

UNIT-3

MName server Mame server for foreign name space
\ Wachine A | Machine B
v -
Dk D
e mote eys

g i YT nfamllts cs.vu.nlfhomelsteen” | Steen
(| _ ‘
i

Reference to foreign name space

Mounting remote name spaces through a specific process
protocol.

Merging Name Spaces

i
: home \ keys : i ¥ \mbox :

elke /max ™ steen
I 2

Nefeln
fwmre mb*‘”‘\“‘ke}’s :

(:} O (:j "n0:fhomefsteen/keys"

Organization of the DEC Global Name Service

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Implementing Name Spaces

O Naming service: a service that allows users and
processes to add, remove, and lookup names

O Name spaces for large-scale widely distributed
systems are typically organized hierarchically

O Three layers used to implement such distributed
name spaces
= Global layer: root node and its children

= Administrational layer: directory nodes within a single
organization

» Managerial layer

Global {

layer \
L

Admini-

strational {

An example partitioning of the DNS name space,
including Internet-accessible files, into three layers.

Wisdom Materials

24

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Name Space Distribution

Item Global Administrational Managerial
Geographical scale of network Worldwide Organization Department
Total number of nodes Few Many Wast numbers
Responsiveness to lockups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Mumber of replicas Many MNone or few Mone

Is client-side caching applied? Yes Yes Sometimes

A comparison between name servers for implementing nodes from a
large-scale name space partitioned into a global layer, as an
administrational layer, and a managerial layer.

Implementation of Name Resolution
2 Iterative vs recursive name resolution

d Recursive name resolution puts a higher
performance demand on each name server

> Too high for global layer name servers

O Advantages of recursive name resolution

» Caching is more effective

» Communication costs may be reduced

Wisdom Materials

25

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Implementation of Name Resolution
The principle of iterative name resolution.

1. =nlvu,cs, ftp= » ——
-'(2, #=<nl>, <vu,cs ftp> names server
{3' “vu.cs.fip> » Name server
Client's 4. #=vu=, <cs, fip> nl node
name
resolver 5. =os flp p MName server
< VU hode
6. #<cs>, <ftp>
7. <ftp> p MName server
*8. #Heftp> cs node
ftp
<nlvu,cs.ftp=> Wnl,vu,cs,ﬂm Nodes are /}

managed by
the same server

Implementation of Name Resolution

The principle of recursive name resolution.

1. =nlvu.csftp=
o » Root

g, #-:nl,vups,ftm/r name server \2 vy, s, ftp>
(e
7. #':UU.CS.ﬂp:' ‘___ Nam sarver
Client's _wi nMinede XSI <cs.ftp=
name F
resolver 6. #<csftp>-_ | MNameserver &~

W vu node %\4. <ftp=-

5. ft<fip> .| MName server e

£s node
<nl,vu,cs,ftp= I ft<nlvu,cs ftp>

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Implementation of Name Resolution

Server for Passes to Receives and | Returns to
Should resolve | Looks up .
node child caches requester
cs <ftp= #<ftp> — - #<ftp>
vu <cs,fip> #<cs> <ftp> #<fip= #<cs>
#<cs, fip=
ni <vu,cs,ftp> #avu> <cs,fip= #<cs> #ayu>
#<cs fip> #<vu,cs>
#<vu,cs fip=
root <ni,vu,cs,fip> #<nl= <vu,cs,fip> #H<yu= #<nl=
#<vu,cs> #<nlvu>
#<vu,cs fip> #<nl vu,cs>
#<nl,vu,cs,fip>

Recursive name resolution of <nl, vu, ¢s, ftp>. Name servers
cache intermediate results for subsequent lookups.

Implementation of Name Resolution

Recursive name resolution

. R
A > Name server
o o nlnode [F.
e =TT > 1R2
i - e MName server | &
Client 3__________" > WU hode
S "'""-—---_.._____#Namesewer /\)RS
Iterative name resolution cs hode
_ Long-distance communication o

The comparison between recursive and iterative name
resolution with respect to communication costs.

Wisdom Materials

27

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Example System: DNS
2 Domain Name System (DNS)

» Host name to IP address translation

» Name space organized as a hierarchical reoted tree
* Name space divided into non-overlapping zones
> Name servers implement the global and administrational
layers
* Managerial layer not part of DNS
* Each zone has a name server, which is typically replicated

* Updates take place at the primary name server for a zone

— Secondary name servers request the primary name server to
transfer its content

The DNS Name Space

:-gé]oer;' gft?:t[;,' ciated Description

S0OA Zone Holds information on the represented zone

A Host Contains an |P address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone
CNAME Node Symbolic link with the pimary name of the represented node
PTR Host Contains the canonical name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful

The most important types of resource records

forming the contents of nodes in the DNS name
space.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3

Name Record type Heéord value N
cs.vLnl SOA star (19939121502, 7200,3600,2419200,86400) |
An exce r'P'r s vunl NS star.cs.vu.nl
f h cs.vunl NS top.cs.vunl
roms 1' e cs.vunl NS solg.cs.vu.nl
cs.vunl x "Vrije Universiteit - Math. & Comp. Sc.”
D N S cs.vunl MX 1 zephyr.cs.vu.nl
cs.vu.nl X 2 tomada.cs.vuni
d b | es.vu.nl MX 3 star.cs.vu.nl -
Cl'h’] ase star.cs.vu.nl HINFO Sun Unix
star.cs.vu.nl M 1 star.cs.vunl
fOI"‘ The star.cs.vu.nl M 10 zephyr.es.vu.nl
star.cs.vunl A 130.37.2486
Zone star.cs.vunl A 192.31.231.42
zephyr.cs.vu.nl HINFO Sun Unix
cs, Vu‘nf. zephyr.cs.vunl X 1 zephyr.cs.vunl
zephyr_cs.vu.nl WX 2 tomnado.cs.vnl
zepnr.ss_wu.rl_ A 192.31.231.66
www.cs v nl CMNAME soling.cs.vunl
ftp.cs vunl CNAME soling.es.vunl
soling.cs.vu.nl HINFO Sun Unix
soling.cs.vu.nl MX 1 saling.cs.vu.nl
soling.cs.vu.ni MX 10 zephyr.cs.vu.nl
soling.cs.vu.nl A 130372411
lasar.cs.vu.nl HINFO PC MS-DOS
laser.cs.vu.nl A 130.37.30.32
vucs-das.csvunl PTR 0.26.37.130.in-addr.arpa
vucs-das.csvunl A 130.37.26.0

DNS Implementation

Name Record type Record value
cs.vu.nl NS solo.cs.vu.nl
solo.cs.vu.nl A 130.37.211

Part of the description for the vu.n/ domain
which contains the c¢s.vu.nl domain.

Wisdom Materials

29

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS

Example System: X.500

O An example of a directory service

» Analogy: X.500 is to DNS as the yellow pages are to a telephone

book

O Each directory entry is made up of a collection of (attribute,

value) pairs

» Attributes can be single-valued or multiple-valued

O Collection of all directory entries is called a Directory
Information Base (DIB)

O Each entry has a globally unique name formed by a sequence
of naming attributes (Relative Distinguished Names or RDN)

O Lookup operations

» Read: Read a single record given its pathname in the Directory
Information Tree (DIT), Le. hierarchical name space formed by

directory entries

» List: return the names of all outgoing edges of a given nede in

the DIT

The X.500 Name Space

Attribute Abbr. Value

Country C NL

Locality L Amsterdam
Organization L Vrje Universiteit
OrganizationalUnit ou Math. & Comp. Sc.
CommonName CN Main server

Mail_Servers

130.37.24.6, 192.31.231,192.31.231 .66

FTP_ Server

130.37.21.11

WWW_Server

130.37.21.11

A simple example of a X.500 directory entry
using X.500 naming conventions.

Wisdom Materials

30

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

The X.500 Name Space

Part of the directory
information tree.

Host_Name = star, Host_Name = zephyr

The X.500 Name Space

Two directory entries having Host_Name as RDN.

Attribute Value Attribute Value

Country ML Country MNL

Locality Amsterdam Locality Amsterdam
Organization Wrije Universiteit Organization Yrije Universiteit

OrganizationalUnit

Math. & Comp. Sc.

OrganizationalUnit

Math. & Comp. Sc.

CommonName Main server CommonName Main server
Host_MName star Host_MName zephyr
Host_Address 192.31.231.42 Host_Address 192.31.231.66

X.500 implementation

O Similar to DNS

» The DIT is partitioned and distributed across several servers
known as Directory Service Agents (DSA)

» Clients are represented by name resolvers called Directory
User Agents (DUA)

0O Differences from DNS

» Operations for searching through a DIB given a set of criteria
that attributes should meet

» Searching is an expensive operation since several leaf nodes of
a DIT will need to be accessed
O Lightweight Directory Access Protocol (LDAP) is an
application-level protocol that is a simplified version of
X.B00O

» Becoming a de facto standard for Internet-based directory
services

Wisdom Materials

31

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Locating Mobile Entities

Q Consider an entity that changes its location

» E.g. ftp.cs.vu.nl moves to another domain
= Cannot change name

» Two choices

* Record the address of the new machine in the DNS
database for cs.vunl

— If name changes again, DNS entry will have to be changed again

* Record the name of the new machine in the database, Le.
use a symbolic link

— Inefficient lookups
O Traditional naming services such as DNS cannot
cope well with mobile entities

» Problems arise because of the direct mapping between
human-friendly names and the address of entities

Naming versus Locating Entities

‘NameHName ‘NameHName‘ ‘NameHName‘ ‘NameHName“
N, AN N k 7)
\\;PK X /]L/‘(/ \\\:‘q Y ‘,// f v
\ . P I, . /

| EntityD |- ’

\ I Location
Vf)(/\ ‘I' V’ \,ﬁ{*\] \ service
‘Address ‘ Address| Wdress ‘ Address ’Tdd@ Address

(2 (b)

-

a) Direct, single level mapping between names and addresses.
b) Two-level mapping using identities.

Wisdom Materials

32

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Locating Entities

0O Simple Solutions that work in a LAN environment
= Broadcasting & Multicasting

= Message containing identifier of the entity is broadcast;

machine with an access point for the entity replies with the
address of the access point

— ARP protocol for finding the data-link address of a machine
given the IP address

» Forwarding pointers

= When an entity moves from A to B, it leaves behind a
reference to its new location at B

0O Home-based Approaches

» Home agent keeps track of current location of mobile

entity
0 Hierarchical Approaches

Forwarding Pointers

Process P2 Proxy p’ refers to
Proxy p’ same skeleton as

“a proxy p

Process P3

|~ |dentical proxy

Process P1

Proxy p

A

Process P4 Object

Local
invocation

F

Interprocess

communication |dentical L
skeleton

Forwarding Pointers

) Skeleton is no

Invoca'ﬁflqn longer referenced .

request is . : by any prox . .

sent to object 3 |l'| 3 YA ? | |
. L 4 '

Skeleton at ohject's Client proxy sets ~ ————

current process returns a shortout
the current location
(=) (b}

Redirecting a forwarding pointer, by storing a
shortcut in a proxy.

Wisdom Materials

33

https://www.wisdommaterials.com/

UNIT-3

DISTRIBUTED SYSTEMS
Ly e -
il Y | _
—_—) \} o ST
) & , -
l. . b -~ [\[\--._‘- "
Host's home [e /
location W T o K T
2 1. Send packet fo host at its home RS
-)____—'—_T‘_U’T—_l_ T _ -, "'._‘\II
IJI' \\‘ ~ -____ /_I_fjnii‘:__:'—_% h‘"'\--\._‘._._ P‘t’
1 - 2 Return address . e o
\T' of current location T gl g
ARG e N N
. R 4 Client's
'_‘J_,—w .! o T J,«)‘ “on < location
X A e R .
e\ N T Res
=5, 3. Tunnel packet to Ol
; =, i [= S
¢ e ourrent Iocatmn‘ : - ‘T{ \
‘.\q_ ‘c.-_H_ [~ P . AL
) A ST ’ \
Py T A " 4 Send successive packets |
l r,.ej w to current location T
; -
¢ ;H Host's present location f
e

Hierarchical Approaches

The root directory Top-level
node dir(T -
M~ _domain T

- Directory node

cir(S) of domain 5
v} ™ A subdornain S
st i of top-level domain T
b & (Sis contained in T)

A leaf domain, contained in S

Hierarchical organization of a location service into
domains, each having an associated directory node.

Wisdom Materials

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Hierarchical Approaches

Field with no data
Field for domain
dom{MN) with
pointer to M

Location record
& for E at node M

Location recard
with anly one field,
containing an address

Domain D1

Domain D2

An example of storing information of an entity having
two addresses in different leaf domains.

Hierarchical Approaches

Node knows

about E, so requast
MNeode has no is forwarded to child .
record for E, so
that request is
forwarded to
parent

Look-up
request

i Domain D
1

Looking up a location in a hierarchically organized
location service.

Hierarchical Approaches

Mode knows
Node has no about E, so request
g?;g:z;f.s = ne I?ngerfonﬁfded Node creates record
forwarded MF/ - and stores pomtet *ﬁ}xﬂ _
to parent . -
f A A~ ! MNode creates
'f N /\ T record and
-- :1;»_‘ 'm) stores address
r
I - }J l,i’ z \\
\\r \’\-—\4 . . /I \y—\ ,—ii L \\ .
""Hrw‘;u'-l o
A - LU
i - Domain D
: Insert
' request
) (a) (&)

a) Aninsert request is forwarded to the first node that
knows about entity E.

b) A chain of forwarding pointers to the leaf node is
created.

Wisdom Materials

35

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

- Y
- A i)
L // ~, / I,’) / “X ", Domain D

T R N T
! [(S T R S [ERSEEREEE DR
\ =, . Ay ok S A

~ /' e

Cached pointers E moves regularly between

to node dir(D) the two subdomains

Caching a reference fo a directory node of the
lowest-level domain in which an entity will reside
most of the fime.

Pointer Caches

Cached pointer
to hode dir(D) which
should be invalidated

Original address

®/ (is still valid)

MNew address

A cache entry that needs to be invalidated because
it returns a nonlocal address, while such an
address is available.

Wisdom Materials

36

https://www.wisdommaterials.com/

UNIT-3
DISTRIBUTED SYSTEMS

Scalablh‘ry Issues

o “’a/a

é: ﬁL. <"} . ,'r’\ E_M‘V‘:M_ (““—'\._\

= . Subnode of the root, responsible - ‘_}
UL i for handling requests for E ' .
Domain where J \,—- o 'y
E currently resides ™, \I - /(. r'./
b B 1 s Lo\
Y ‘r____,f-'“' =\ _,Lﬂm) AT r'\d +
v Alternative, and beftter chmce S
B e & o cubnodeto handle E 2 0
LIS N e
| \f' N
= T - "
NG e { .x c\ S5 A 5/
" ", e kY |)
_/;\ J"\c—h_ﬂ T ’{‘hx _f/j “ \E\r\\ ,1/ g -
Aternative roste 2 xf, “Curentroute i \}
- e T locki t o N
of lookup request RN /,f/ ¢ J OKUp reques e ~
N v W | % Y
z} v HL/ S)
é{ Client| requesung the current address of E b
\ /

The scalability issues related to uniformly placing subnodes of a
partitioned root node across the network covered by a
location service.

Wisdom Materials

37

https://www.wisdommaterials.com/

