AREA

1. Triangles

a. Sum of the angles of a triangle is 180°.

b. The sum of any two sides of a triangle is greater than the third side.

c. Pythagoras Theorem:

In a right-angled triangle, (Hypotenuse) $^{2} = (Base)^{2} + (Height)^{2}$.

d. The line joining the mid-point of a side of a triangle to the positive vertex is called the median. e. The point where the three medians of a triangle meet is called centroid. The centroid divided each of the medians in the ratio 2: 1.

f. In an isosceles triangle, the altitude from the vertex bisects the base.

g. The median of a triangle divides it into two triangles of the same area.

h. The area of the triangle formed by joining the mid-points of the sides of a given triangle is one-fourth of the area of the given triangle.

2. Quadrilaterals

a. Diagonals of a parallelogram bisect each other.

b. Each diagonal of a parallelogram divides it into triangles of the same area.

c. Diagonals of a rectangle are equal and bisect each other.

d. Diagonals of a square are equal and bisect each other at right angles.

e. Diagonals of a rhombus are unequal and bisect each other at right angles.

f. A parallelogram and a rectangle on the same base and between the same parallels are equal in area.

g. Parallelogram which is a rectangle has the greatest area.

t Formulae
Area of a rectangle = (Length x Breadth).
Perimeter of a rectangle = $2(\text{Length} + \text{Breadth})$.
Area of a square = (side) 2 = (diagonal) $^{2}/2$.
Area of 4 walls of a room = 2 (Length + Breadth) x Height.
Area of a triangle = $1/2$ x Base x Height.
Area of a triangle = $s(s-a)$ (s-b) (s-c)
Where a, b, c are the sides of the triangle and $s = (a + b + c)/2$
Area of an equilateral triangle = $3/4 \text{ x} (\text{side})^2$
Radius of in circle of an equilateral triangle of side $a = a / 23$
Radius of circumcircle of an equilateral triangle of side $a = a / 3$
Radius of in circle of a triangle of area (Delta) and semi-perimeter $r = Delta/s$
Area of parallelogram = (Base x Height).
Area of a rhombus = Product of diagonals / 2.
Area of a trapezium = x (sum of parallel sides x distance between them) $/ 2$.
Area of a circle = π R ² , where R is the radius.
Circumference of a circle = $2 \pi R$
Length of an arc = $2 \pi \theta R/360$, where θ is the central angle.
Area of a sector = 1(arc x R) = π R2 $\theta/360$ = R2 $\theta/2$
Circumference of a semi-circle = π R.
Area of semi-circle = $\pi R^2 / 2$.

Important Formulae

Problems with solutions

1. The ratio between the perimeter and the breadth of a rectangle is 5 : 1. If the area of the rectangle is 216 sq. cm, what is the length of the rectangle?

Solution

 $\frac{2(1+b)}{b} = \frac{5}{1}$ 21 + 2b = 5b 3b = 21 $b = \frac{2}{3}l$ Then, Area = 216 cm² $1 \times b = 216$ $1 \times \frac{2}{3}l = 216$ $l^{2} = 324$ l = 18 cm.

2. A towel, when bleached, was found to have lost 20% of its length and 10% of its breadth. The percentage of decrease in area is:

Solution

Let original length = x and original breadth = y. Decrease in area = xy - $\left(\frac{80}{100}x \times \frac{90}{100}y\right)$ = $\left(xy - \frac{18}{25}xy\right)$ = $\frac{7}{25}xy$. Decrease % = $\left(\frac{7}{25}xy \times \frac{1}{xy} \times 100\right)_{\%}$ = 28%.

3. A man walked diagonally across a square lot. Approximately, what was the percent saved by not walking along the edges?

Solution

Let the side of the square (ABCD) be x metres.

Then, AB + BC = 2x metres.
AC = 2x = (1.41x) m.
Saving on 2x metres = (0.59x) m.
Saving % =
$$\left(\frac{0.59x}{2x} \times 100\right)_{\%}$$
 = 30% (approx.)

4. What is the least number of squares tiles required to pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?

Solution

Length of largest tile = H.C.F. of 1517 cm and 902 cm = 41 cm.

Area of each tile = (41 x 41) cm². \therefore Required number of tiles = $\left(\frac{1517 \times 902}{41 \times 41}\right) = 814.$

5. The length of a rectangle is halved, while its breadth is tripled. What is the percentage change in area?

Solution

Let original length = x and original breadth = y. Original area = xy. New length = $\frac{x}{2}$. New breadth = 3y. New area = $\left(\frac{x}{2} \times 3y\right) = \frac{3}{2}xy.$ Increase % = $\left(\frac{1}{2}xy \times \frac{1}{xy} \times 100\right)_{\%} = 50\%.$