AREA

1. Triangles

a. Sum of the angles of a triangle is 180°.
b. The sum of any two sides of a triangle is greater than the third side.
c. Pythagoras Theorem:

In a right-angled triangle, $(\text { Hypotenuse })^{\mathbf{2}}=(\text { Base })^{\mathbf{2}}+(\text { Height })^{\mathbf{2}}$.
d. The line joining the mid-point of a side of a triangle to the positive vertex is called the median. e. The point where the three medians of a triangle meet is called centroid. The centroid divided each of the medians in the ratio $2: 1$.
f. In an isosceles triangle, the altitude from the vertex bisects the base.
g. The median of a triangle divides it into two triangles of the same area.
h . The area of the triangle formed by joining the mid-points of the sides of a given triangle is one-fourth of the area of the given triangle.
2. Quadrilaterals
a. Diagonals of a parallelogram bisect each other.
b. Each diagonal of a parallelogram divides it into triangles of the same area.
c. Diagonals of a rectangle are equal and bisect each other.
d. Diagonals of a square are equal and bisect each other at right angles.
e. Diagonals of a rhombus are unequal and bisect each other at right angles.
f. A parallelogram and a rectangle on the same base and between the same parallels are equal in area.
g. Parallelogram which is a rectangle has the greatest area.

Important Formulae

1	Area of a rectangle $=($ Length \times Breadth $)$.
2	Perimeter of a rectangle $=2$ (Length + Breadth) ${ }^{\text {¢ }}$
3	Area of a square $=(\text { side })^{2}=(\text { diagonal })^{2} / 2$
4	Area of 4 walls of a room $=2$ (Length + Breadth) \times Height.
5	Area of a triangle $=1 / 2 \times$ Base \times Height.
6	Area of a triangle $=\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$ Where a, b, c are the sides of the triangle and $s=(a+b+c) / 2$
7	Area of an equilateral triangle $=3 / 4 \times(\text { side })^{2}$
8	Radius of in circle of an equilateral triangle of side $\mathrm{a}=\mathrm{a} / 23$
9	Radius of circumcircle of an equilateral triangle of side $\mathrm{a}=\mathrm{a} / 3$
10	Radius of in circle of a triangle of area (Delta) and semi-perimeter r = Delta/ s
11	Area of parallelogram $=($ Base \times Height $)$.
12	Area of a rhombus $=$ Product of diagonals $/ 2$.
13	Area of a trapezium $=x$ (sum of parallel sides x distance between them) / 2.
14	Area of a circle $=\pi \mathrm{R}^{2}$, where R is the radius.
15	Circumference of a circle $=2 \pi \mathrm{R}$
16	Length of an arc $=2 \boldsymbol{\pi} \theta \mathrm{R} / 360$, where θ is the central angle.
17	Area of a sector $=1(\operatorname{arc} \times \mathrm{R})=\boldsymbol{\pi} 2 \mathrm{R} 2 / 360=\mathrm{R} 2 \theta / 2$
18	Circumference of a semi-circle $=\pi$ R.
19	Area of semi-circle $=\pi \mathrm{R}^{2} / 2$.

Problems with solutions

1. The ratio between the perimeter and the breadth of a rectangle is $5: 1$. If the area of the rectangle is $216 \mathrm{sq} . \mathrm{cm}$, what is the length of the rectangle?

Solution
$\frac{2(1+\mathrm{b})}{\mathrm{b}}=\frac{5}{1}$
$2 \mathrm{l}+2 \mathrm{~b}=5 \mathrm{~b}$
$3 b=21$
$\mathrm{b}=\frac{2}{3} 1$
Then, Area $=216 \mathrm{~cm}^{2}$
$1 \times b=216$
$1 \times \frac{2}{3}=216$
$1^{2}=324$
$\mathrm{l}=18 \mathrm{~cm}$.
2. A towel, when bleached, was found to have lost 20% of its length and 10% of its breadth. The percentage of decrease in area is:

Solution

Let original length $=x$ and original breadth $=y$.
Decrease in area $=x y-\left(\frac{80}{100} x \times \frac{90}{100} y\right)$

$$
\begin{aligned}
& =\left(x y-\frac{18}{25} x y\right) \\
& =\frac{7}{25} x y .
\end{aligned}
$$

Decrease $\%=\left(\frac{7}{25} \times y \times \frac{1}{x y} \times 100\right)_{\%}=28 \%$.
3. A man walked diagonally across a square lot. Approximately, what was the percent saved by not walking along the edges?

Solution

Let the side of the square (ABCD) be x metres.

Then, $\mathrm{AB}+\mathrm{BC}=2 \mathrm{x}$ metres. D
$\mathrm{AC}=2 \mathrm{x}=(1.41 \mathrm{x}) \mathrm{m}$.
Saving on 2 x metres $=(0.59 \mathrm{x}) \mathrm{m}$.
Saving $\%=\left(\frac{0.59 \mathrm{x}}{2 \mathrm{x}} \times 100\right)_{\%}=30 \%$ (approx.)
4. What is the least number of squares tiles required to pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?

Solution

Length of largest tile $=$ H.C.F. of 1517 cm and $902 \mathrm{~cm}=41 \mathrm{~cm}$.
Area of each tile $=(41 \times 41) \mathrm{cm}^{2}$.
\therefore Required number of tiles $=\left(\frac{1517 \times 902}{41 \times 41}\right)=814$.
5. The length of a rectangle is halved, while its breadth is tripled. What is the percentage change in area?

Solution

Let original length $=x$ and original breadth $=y$.
Original area $=x y$.
New length $=\frac{x}{2}$.
New breadth $=3 \mathrm{y}$.
New area $=\left(\frac{x}{2} \times 3 y\right)=\frac{3}{2} x y$.
Increase $\%=\left(\frac{1}{2} \mathrm{xy} \times \frac{1}{\mathrm{xy}} \times 100\right)_{\%}=50 \%$.

