LOGARITHMS

1. $\log_{a} (x y) = \log_{a} x + \log_{a} y$ 2. $\log_{a} [x/y] = \log_{a} x - \log_{a} y$ 3. $\log_{x} x=1$ 4. $\log_{a} 1=0$ 5. $\log_{a} x^{n}=n (\log_{a} x)$ 6. $\log_{a} x=1 / \log_{x} a$ 7. $\log_{a} x=\log_{b} x / \log_{b} a=\log x / \log a$

Problems with solutions

1. If $\log 2 = 0.3010$ and $\log 3 = 0.4771$, the value of $\log_5 512$ is:

Solution

$$\log_5 512 = \frac{\log 512}{\log 5}$$
$$= \frac{\log 2^9}{\log (10/2)}$$
$$= \frac{9 \log 2}{\log 10 - \log 2}$$
$$= \frac{(9 \times 0.3010)}{1 - 0.3010}$$
$$= \frac{2.709}{0.699}$$
$$= \frac{2709}{699}$$
$$= 3.876$$

2. If $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5) + 1$, then x is equal to:

Solution

 $\begin{array}{l} og_{10} \ 5 + log_{10} \ (5x+1) = log_{10} \ (x+5) + 1 \\ log_{10} \ 5 + log_{10} \ (5x+1) = log_{10} \ (x+5) + log_{10} \ 10 \\ log_{10} \ [5 \ (5x+1)] = log_{10} \ [10(x+5)] \\ 5(5x+1) = 10(x+5) \\ 5x+1 = 2x+10 \end{array}$

3x = 9x = 3.

3. If $\log_{x}\left(\frac{9}{16}\right) = -\frac{1}{2}$, then x is equal to:
Solution
$\log_{x}\left(\frac{9}{16}\right) = -\frac{1}{2}$
$\Rightarrow x^{-1/2} = \frac{9}{16}$
$\Rightarrow \frac{1}{x} = \frac{9}{16}$
$\Rightarrow x = \frac{16}{9}$
$\Rightarrow \mathbf{x} = \left(\frac{16}{9}\right)^2$
$\Rightarrow x = \frac{256}{81}$

4. If $\log_x y = 100$ and $\log_2 x = 10$, then the value of y is:

Solution

$$log_{2} x = 10 \implies x = 2^{10}.$$

$$log_{x} y = 100$$

$$\implies y = x^{100}$$

$$\implies y = (2^{10})^{100}$$
 [put value of x]

$$\implies y = 2^{1000}.$$

5. If $\log_{10} 2 = 0.3010$, then $\log_2 10$ is equal to:

Solution

$$\log_2 10 = \frac{1}{\log_{10} 2} = \frac{1}{0.3010} = \frac{10000}{3010} = \frac{1000}{301}.$$