LOGARITHMS

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}[x / y]=\log _{a} x-\log _{a} y$
3. $\log _{x} x=1$
4. $\log _{a} 1=0$
5. $\log _{a} x^{n}=n\left(\log _{a} x\right)$
6. $\log _{a} x=1 / \log _{x} a$
7. $\log _{a} x=\log _{b} x / \log _{b} a=\log x / \log a$

Problems with solutions

1. If $\log 2=0.3010$ and $\log 3=0.4771$, the value of $\log _{5} 512$ is:

Solution

$\log _{5} 512=\frac{\log 512}{\log 5}$

$$
\begin{aligned}
& =\frac{\log 2^{9}}{\log (10 / 2)} \\
& =\frac{9 \log 2}{\log 10-\log 2} \\
& =\frac{(9 \times 0.3010)}{1-0.3010} \\
& =\frac{2.709}{0.699} \\
& =\frac{2709}{699} \\
& =3.876
\end{aligned}
$$

2. If $\log _{10} 5+\log _{10}(5 \mathrm{x}+1)=\log _{10}(\mathrm{x}+5)+1$, then x is equal to:

Solution

```
og}105+\mp@subsup{\operatorname{log}}{10}{}(5x+1)=\mp@subsup{\operatorname{log}}{10}{}(x+5)+
\mp@subsup{\operatorname{log}}{10}{}5+\mp@subsup{\operatorname{log}}{10}{}(5x+1)=\mp@subsup{\operatorname{log}}{10}{}(x+5)+\mp@subsup{\operatorname{log}}{10}{}10
log}10[5(5x+1)]=\mp@subsup{\operatorname{log}}{10}{}[10(x+5)
5(5x+1) = 10(x + 5)
5x+1=2x+10
```

$3 \mathrm{x}=9$
$\mathrm{x}=3$.
3. If $\log _{x}\left(\frac{9}{16}\right)=-\frac{1}{2}$, then x is equal to:

Solution

$\log _{x}\left(\frac{9}{16}\right)=-\frac{1}{2}$
$\Rightarrow \mathrm{x}^{-1 / 2}=\frac{9}{16}$
$\Rightarrow \frac{1}{x}=\frac{9}{16}$
$\Rightarrow \mathrm{x}=\frac{16}{9}$
$\Rightarrow \mathrm{x}=\left(\frac{16}{9}\right)^{2}$
$\Rightarrow \mathrm{x}=\frac{256}{81}$
4. If $\log _{x} y=100$ and $\log _{2} x=10$, then the value of y is:

Solution
$\log _{2} \mathrm{x}=10 \Rightarrow \mathrm{x}=2^{10}$.
$\log _{x} y=100$
$\Rightarrow \mathrm{y}=\mathrm{x}^{100}$
$\Rightarrow y=\left(2^{10}\right)^{100} \quad[$ put value of $x]$
$\Rightarrow \mathrm{y}=2^{1000}$.
5. If $\log _{10} 2=0.3010$, then $\log _{2} 10$ is equal to:

Solution

$\log _{2} 10=\frac{1}{\log _{10} 2}=\frac{1}{0.3010}=\frac{10000}{3010}=\frac{1000}{301}$.

