NUMBERS

S.NO	FORMULAE
1	$(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})=\mathrm{a}^{2}-\mathrm{b}^{2}$
2	$(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}$
3	$(\mathrm{a}-\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab}$
4	$(\mathrm{a}+\mathrm{b}+\mathrm{c}) 2=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})$
5	$\mathrm{a}^{3}+\mathrm{b}^{3}=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{2}-\mathrm{ab}+\mathrm{b}^{2}\right)$
6	$\mathrm{a}^{3}-\mathrm{b}^{3}=(\mathrm{a}-\mathrm{b})\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)$
7	$\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2-\mathrm{ab}-\mathrm{bc}-\mathrm{ac})$
8	When $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then $\mathrm{a} 3+\mathrm{b} 3+\mathrm{c} 3=3 \mathrm{abc}$

Problems with solutions

1. Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:

Solution

Let 3 integers be $\mathrm{x}, \mathrm{x}+2$ and $\mathrm{x}+4$.
$3 x=2(x+4)+3 \quad x=11$.
Third integer $=x+4=15$.
2. A two-digit number is such that the product of the digits is 8 . When 18 is added to the number, then the digits are reversed. The number is:

Solution

Let ten's and unit digit be x and $\frac{8}{\mathrm{x}}$ Respectively.
Then, $\left(10 \mathrm{x}+\frac{8}{\mathrm{x}}\right)+18=10 \mathrm{x} \frac{8}{\mathrm{x}}+\mathrm{x}$
$10 x^{2}+8+18 x=80+x^{2}$
$9 x^{2}+18 x-72=0$
$x^{2}+2 x-8=0$
$(x+4)(x-2)=0$
$x=2$.
3. The sum of the squares of three numbers is 138 , while the sum of their products taken two at a time is 131 . Their sum is:

Solution

Let the numbers be a, b and c .
Then, $a^{2}+b^{2}+c^{2}=138$ and $(a b+b c+c a)=131$.
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=138+2 \times 131=400$.
$(a+b+c)=400=20$.
4. In a two-digit, if it is known that its unit's digit exceeds its ten's digit by 2 and that the product of the given number and the sum of its digits is equal to 144 , then the number is:

Solution

Let the ten's digit be x .
Then, unit's digit $=x+2$.
Number $=10 \mathrm{x}+(\mathrm{x}+2)=11 \mathrm{x}+2$.
Sum of digits $=x+(x+2)=2 x+2$.
$(11 x+2)(2 x+2)=144$
$22 x^{2}+26 x-140=0$
$11 x^{2}+13 x-70=0$
$(x-2)(11 x+35)=0$
$\mathrm{x}=2$.
Hence, required number $=11 x+2=24$.
5. Find a positive number which when increased by 17 is equal to 60 times the reciprocal of the number.

Solution

Let the number be x .
$x+17=\frac{60}{x}$
$x^{2}+17 x-60=0$
$(x+20)(x-3)=0$
$\mathrm{x}=3$.

