NUMBERS

S.NO	FORMULAE
1	$(a + b)(a - b) = a^2 - b^2$
2	$(a + b)^2 = a^2 + b^2 + 2ab$
3	$(a - b)^2 = a^2 + b^2 - 2ab$
4	$(a + b + c) 2 = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)$
5	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
6	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
7	$a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a 2 + b 2 + c 2 - ab - bc - ac)$
8	When $a + b + c = 0$, then $a 3 + b 3 + c 3 = 3abc$

Problems with solutions

1. Three times the first of three consecutive odd integers is 3 more than twice the third. The third integer is:

Solution

Let 3 integers be x, x + 2 and x + 4. 3x = 2(x + 4) + 3 x = 11. Third integer = x + 4 = 15.

2. A two-digit number is such that the product of the digits is 8. When 18 is added to the number, then the digits are reversed. The number is:

Solution

Let ten's and unit digit be x and $\frac{8}{x}$ Respectively. Then, $\left(10x + \frac{8}{x}\right) + 18 = 10 \text{ x } \frac{8}{x} + x$ $10x^2 + 8 + 18x = 80 + x^2$ $9x^2 + 18x - 72 = 0$ $x^2 + 2x - 8 = 0$ (x + 4)(x - 2) = 0x = 2.

3. The sum of the squares of three numbers is 138, while the sum of their products taken two at a time is 131. Their sum is:

Solution

Let the numbers be a, b and c. Then, $a^2 + b^2 + c^2 = 138$ and (ab + bc + ca) = 131. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) = 138 + 2 \times 131 = 400$. (a + b + c) = 400 = 20. 4. In a two-digit, if it is known that its unit's digit exceeds its ten's digit by 2 and that the product of the given number and the sum of its digits is equal to 144, then the number is:

Solution

Let the ten's digit be x. Then, unit's digit = x + 2. Number = 10x + (x + 2) = 11x + 2. Sum of digits = x + (x + 2) = 2x + 2. (11x + 2)(2x + 2) = 144 $22x^2 + 26x - 140 = 0$ $11x^2 + 13x - 70 = 0$ (x - 2)(11x + 35) = 0 x = 2. Hence, required number = 11x + 2 = 24.

5. Find a positive number which when increased by 17 is equal to 60 times the reciprocal of the number.

Solution

Let the number be x. $x + 17 = \frac{60}{x}$ $x^{2} + 17x - 60 = 0$ (x + 20)(x - 3) = 0x = 3.