PERCENTAGE

It is a number / ratio expressed as a fraction of 100. It is denoted by percent sign "\%". X percent means $=\mathrm{X} \%=\mathrm{X} / 100$

Example: $50 \%=50 / 100=1 / 2$

Note

1. Any faction can be expressed in terms of percentage.
2. Express a / b as percentage. $a / b=a / b * 100$

Percentage Increase	If the commodity price increases by X\%, then the reduction in consumption so as not to increase the expenditure is:	$((\mathrm{X} /(100+\mathrm{X})) * 100) \%$
Percentage Decrease	If the commodity price decreases by X\%, then the reduction in consumption so as not to decrease the expenditure is:	$((\mathrm{X} /(100-\mathrm{X})) * 100) \%$

Results on Population

Let P be the town population \& it increases at the rate of $\mathrm{R} \%$ per annum, then:

Population after n years	$=\mathrm{P}(1+\mathrm{R} / 100)^{\mathrm{n}}$
Population n years ago	$=\mathrm{P} /(1+\mathrm{R} / 100)^{\mathrm{n}}$

Results on Depreciation

Let P be the machine present value \& it depreciates at the rate of $\mathrm{R} \%$ per annum. Then:

S. No	Formula
1	Value of the machine after n years $=\mathrm{P}(1-\mathrm{R} / 100)^{\mathrm{n}}$
2	Value of the machine n years ago $=\mathrm{P} /(1-\mathrm{R} / 100)^{\mathrm{n}}$
3	If A is $\mathrm{R} \%$ more than B, then B is less than A by $\left[(\mathrm{R} /(100+\mathrm{R}))^{* 100]}\right.$
4	If A is $\mathrm{R} \%$ less than B, then B is more than A by $\left[(\mathrm{R} /(100-\mathrm{R}))^{* 100]}\right.$

