
 DEPARTMENT OF INFORMATION TECHNOLOGY

VLSI DESIGN LAB MANUAL

TABLE OF CONTENTS

S. No.

Content

Page No.

0.
Introduction to VLSI DESIGN laboratory vi

 List of Programs Program No. Page. No

1 SWITCH LEVEL MODELLING

1.1
OBTAIN LOGIC GATE DESIGN OF NOT , NAND , NOR IN

CMOS

1,2,3 1,3,5

1.2 OBTAIN OAI AND AOI LOGIC GATES OF THE FUNCTION

1.2.1 F=[ab+ac+bd]‘ ---- AOI 4 7

1.2.2 F=[(a+b)(a+c)(b+d)]‘---OAI 5 9

1.3 TRANSMISSION GATE DESIGN

1.3.1 2:1 MUX 6 12

1.3.2 XOR GATE 7 14

1.3.3 X-NOR GATE 8 16

1.3.4 OR GATE 9 18

1.4 COMPLEX LOGIC GATES USING CMOS

1.4.1 F=[a+b(c+d)]‘ 10 21

VLSI DESIGN LAB MANUAL

1.4.2 S-R LATCH 11 23

2
STRUCTURAL GATE LEVEL MODELLING (WITH AND WITHOUT

DELAYS)

2.1 OBTAIN FUNCTION F=[a+b+ac+bd]‘ using gate level modeling 12 25

2.2 DESIGN HALF ADDER 13 28

2.3
DESIGN FULL ADDER USING 2 HALF ADDER & AN OR

GATE

14
31

2.4 IMPLEMENT 2:1 MUX USING TRI STATE BUFFERS 15 34

2.5 IMPLEMENT 4:1 MUX USING 2:1 MULTIPLEXERS 16 37

2.6 SR LATCH 17 40

2.7 D LATCH 18 43

3 HIERARCHICAL MODELING

3.1
CONSTRUCT A 4 INPUT AND GATE USING 2-INPUT NAND

& NOR GATES

19
46

3.2
CONSTRUCT AN 2:4 ACTIVE HIGH DECODER USING

CMOS 2-INPUT NOR & NOT GATES

20
48

3.3 SR LATCH 21 50

3.4 D LATCH 22 52

4 RTL & BEHAVIORAL MODELING

4.1
DESIGN A 4:1 MULTIPLEXER USING RTL &

BEHAVIOURAL MODELLING
23 57

14.2
DESIGN A 2:4 ACTIVE HIGN DECODER USING RTL &

BEHAVIOURSL MODELLING
24 60

4.3
DESIGN A 4 BIT PRIORITY ENCODER USING RTL &

BEHAVIOURSL MODELLING
25 63

4.4
DESIGN A 4 BIT NEGATIVE EDGE TRIGGERED MASTER

SLAVE JK FLIP FLOP USING RTL
26 67

4.5
DESIGN A 4 BIT POSTIVE EDGE TRIGGERED MASTER

SLAVE D FLIP FLOP USING RTL
27 70

VLSI DESIGN LAB MANUAL

4.6
DESIGN A 4 BIT POSTIVE EDGE TRIGGERED MASTER

SLAVE T FLIP FLOP USING RTL
28 72

4.7
DESIGN A 4-BIT LOADABLE SISO/PIPO SHIFT REGISTER

USING RTL

29
74

4.8
IMPLEMENT RIPPLE CARRY ADDER USING RTL AND

BEHAVIORAL MODELING

30
77

4.9
IMPLEMENT CARRY LOOK AHEAD ADDER USING RTL

AND BEHAVIORAL MODELING

31
80

4.10
IMPLEMENT REGISTER MULTIPLIER USING RTL AND

BEHAVIORAL MODELING

32
83

4.11
IMPLEMENT ARRAY MULTIPLIER USING RTL

MODELING

33
85

5 LAYOUT DESIGNING [DSCH2 & MICROWIND2]

5.1 OBTAIN LAYOUT DESIGN OF NOT GATE IN CMOS 34 88

5.2 OBTAIN LAYOUT DESIGN OF NAND GATE IN CMOS 35 91

5.3 OBTAIN LAYOUT DESIGN OF NOR GATE IN CMOS 36 93

 ANNEXURE –I OU PRESCRIBED SYLLABUS 95

 ANNEXURE – II PROGRAMMING LAB EVALUATION

RUBRIC

96

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT v

VLSI DESIN LAB

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

1. Sign in the log register as soon as you enter the lab.

2. Strictly observe lab timings.

3. Strictly follow the written and verbal instructions given by the teacher / Lab Instructor

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewelry in the lab.

6. Mobile phones should be switched off in the lab.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Do not tamper with computer configurations

9. Playing games on the computers is strictly prohibited.

10. Use of Internet during laboratory timings is prohibited

11. Shut down the computer and switch off the monitor before leaving your table.

12. Handle the Trainer kits with care.

13. Don't plug any external devices / Pen drives without permission from lab staff.

14. Don't install any software without the permission of the Lab Incharge.

15. Observation book and lab record should be carried to each lab.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. Please take care of your personal belongings. Lab Incharges /Staff are not responsible for

any loss of your belongings.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT vi

Introduction TO VLSI DESIGN Laboratory

Verilog Theory:

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware

description language is a language used to describe a digital system: for example, a network

switches, a microprocessor or a memory or a simple flip-flop. This just means that, by using a

HDL, one can describe any (digital) hardware at any level. Verilog HDL is case sensitive

Design Styles:

The traditional method of electronic design is bottom-up. Each design is performed at

the gate-level using the standard gates. With the increasing complexity of new designs this

approach is nearly impossible to maintain. New systems consist of ASIC or microprocessors

with a complexity of thousands of transistors. These traditional bottom-up designs have to

give way to new structural, hierarchical design methods. Without these new practices it

would be impossible to handle the new complexity.

Bottom-Up Design:

The desired design-style of all designers is the top-down one. A real top-down design

allows early testing, easy change of different technologies, a structured system design and

offers many other advantages. But it is very difficult to follow a pure top-down design. Due

to this fact most designs are a mix of both methods, implementing some key elements of both

design styles.

History of Verilog:

When Cadence gave OVI the LRM, several companies began working on Verilog

simulators. In 1992, the first of these were announced, and by 1993 there were several

Verilog simulators available from companies other than Cadence. The most successful of

these was VCS, the Verilog Compiled Simulator, from Chronologic Simulation. This was a

true compiler as opposed to an interpreter, which is what Verilog-XL was. As a result,

compile time was substantial, but simulation execution speed was much faster.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT vii

Various stages of ASIC/ FPGA IC design flow.

 Specification

 High Level Design

 Micro Design/Low level design

 RTL Coding

 Simulation

 Synthesis

 Place & Route

 Post Silicon Validation

Simulation:

It is the process of verifying the functional characteristics of models at any level of

abstraction. We use simulators to simulate the Hardware models, to test if the RTL code

meets the functional requirements of the specification. To achieve this we need to write a test

bench, which generates clk, reset and the required test vectors. A sample test bench for a

counter is shown below. Normally we spend 60-70% of time in design verification.

Synthesis:

It is the process in which synthesis tools like design compiler take RTL in Verilog or VHDL,

target technology, and constrains as input and maps the RTL to target technology primitives.

Synthesis tool, after mapping the RTL to gates, also do the minimal amount of timing

analysis to see if the mapped design is meeting the timing requirements. (Important thing to

note is, synthesis tools are not aware of wire delays, they only know of gate delays). After the

synthesis there are a couple of things that are normally done before passing the netlist to

backend (Place and Route).

Place and Route:

The gate level netlist from the synthesis tool is taken and imported into place and

route tool in Verilog netlist format. All the gates and flip-flops are placed; clock tree

synthesis and reset is routed. After this each block is routed. The PAR tool output is a GDS

file, used by foundry for fabricating the ASIC. Backend team normally dumps out SPEF

(standard parasitic exchange format) /RSPF (reduced parasitic exchange format)/DSPF

http://www.asic-world.com/verilog/design_flow1.html#Specification
http://www.asic-world.com/verilog/design_flow1.html#High_Level_Design
http://www.asic-world.com/verilog/design_flow1.html%23Micro_Design/Low_level_design
http://www.asic-world.com/verilog/design_flow1.html#RTL_Coding
http://www.asic-world.com/verilog/design_flow1.html#Simulation
http://www.asic-world.com/verilog/design_flow1.html#Synthesis
http://www.asic-world.com/verilog/design_flow1.html#Place_%26_Route
http://www.asic-world.com/verilog/design_flow1.html#Post_Silicon_Validation

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT ix

(detailed parasitic exchange format) from layout tools like ASTRO to the frontend team, who

then use the read_parasitic command in tools like Prime Time to write out SDF (standard

delay format) for gate level simulation purposes.

Module:

In Verilog, we call our "black boxes" module. This is a reserved word within the program

used to refer to things with inputs, outputs, and internal logic workings.

 wire data type is used for connecting two points.

 reg data type is used for storing values

Here we have only two types of ports, input and output. In real life, we can have bi-

directional ports as well. Verilog allows us to define bi-directional ports as "inout."

Operators:

Nearly all operators are exactly the same as their counterparts in the C programming

language.

Control Statements:

If-else statements check a condition to decide whether or not to execute a portion of

code. If a condition is satisfied, the code is executed. Else, it runs this other portion of code.

One could use any operator in the condition checking, as in the case of C language. If

needed we can have nested if else statements; statements without else are also ok, but they

have their own problem, when modeling combinational logic, in case they result in a Latch

(this is not always true).

Case statements are used where we have one variable which needs to be checked for

multiple values. like an address decoder, where the input is an address and it needs to be

checked for all the values that it can take. Instead of using multiple nested if-else statements,

one for each value we're looking for, we use a single case statement: this is similar to switch

statements in languages like C++.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT x

A while statement executes the code within it repeatedly if the condition it is assigned

to check returns true. While loops are not normally used for models in real life, but they are

used in test benches. As with other statement blocks, they are delimited by begin and end.

For loops in Verilog are almost exactly like for loops in C or C++. The only

difference is that the ++ and -- operators are not supported in Verilog.

Repeat is similar to the for loop. Instead of explicitly specifying a variable and

incrementing it when we declare the for loop, we tell the program how many times to run

through the code, and no variables are incremented.

 While, if-else, case (switch) statements are the same as in C language.

 If-else and case statements require all the cases to be covered for combinational logic.

 For-loop is the same as in C, but no ++ and -- operators.

 Repeat is the same as the for-loop but without the incrementing variable.

 Combinational elements can be modeled using assign and always statements.

 Sequential elements can be modeled using only always statement.

 There is a third block, which is used in test benches only: it is called Initial statement.

 An initial block, as the name suggests, is executed only once when simulation starts.

This is useful in writing test benches. If we have multiple initial blocks, then all of

them are executed at the beginning of simulation.

 always: As the name suggests, an always block executes always, unlike initial blocks

which execute only once (at the beginning of simulation). A second difference is that

an always block should have a sensitive list or a delay associated with it.

 The sensitive list is the one which tells the always block when to execute the block of

code. The @ symbol after reserved word ' always', indicates that the block will be

triggered "at" the condition in parenthesis after symbol @.

 One important note about always block: it cannot drive wire data type, but can drive

reg and integer data types.

 An assign statement is used for modeling only combinational logic and it is executed

continuously. So the assign statement is called 'continuous assignment statement' as

there is no sensitive list.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xi

Tasks and Functions:

When repeating the same old things again and again, Verilog, like any other

programming language, provides means to address repeated used code, these are called Tasks

and Functions.

Functions and tasks have the same syntax; one difference is that tasks can have

delays, whereas functions can not have any delay. This means that function can be used for

modeling combinational logic.

A second difference is that functions can return a value, whereas tasks cannot.

Module Instantiation

 Modules are the building blocks of Verilog designs

 You create the design hierarchy by instantiating modules in other modules.

 You instance a module when you use that module in another, higher-level module

 Ports: Ports allow communication between a module and its environment.

 All but the top-level modules in a hierarchy have ports.

 Ports can be associated by order or by name.

 Registers: store the last value assigned to them until another assignment statement

changes their value.

 Registers represent data storage constructs.

 We can create regs arrays called memories.

 Register data types are used as variables in procedural blocks.

 Register data type is required if a signal is assigned a value within a procedural block

 Procedural blocks begin with keyword initial and always.

Gate level primitives:

 Verilog has built in primitives like gates, transmission gates, and switches. These are

rarely used in design (RTL Coding), but are used in post synthesis step for modeling

the ASIC/FPGA cells; these cells are then used for gate level simulation, or what is

called as SDF simulation. Also the output netlist format from the synthesis tool,

which is imported into the place and route tool, is also in Verilog gate level

primitives. Ex: and , or etc:

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xii

 There are six different switch primitives (transistor models) used in Verilog, nmos,

pmos and cmos and the corresponding three resistive versions rnmos, rpmos and

rcmos. The cmos types of switches have two gates and so have two control signals.

 Transmission gates tran and rtran are permanently on and do not have a control line.

Tran can be used to interface two wires with separate drives, and rtran can be used to

weaken signals. Resistive devices reduce the signal strength which appears on the

output by one level. All the switches only pass signals from source to drain; incorrect

wiring of the devices will result in high impedance outputs.

Delays:

In real circuits, logic gates have delays associated with them. Verilog provides the

mechanism to associate delays with gates

 Rise, Fall and Turn-off delays.

 Minimal, Typical, and Maximum delays.

 In Verilog delays can be introduced with #'num' as in the examples below, where # is

a special character to introduce delay, and 'num' is the number of ticks simulator

should delay current statement execution

 The rise delay is associated with a gate output transition to 1 from another value (0, x,

z).

 The fall delay is associated with a gate output transition to 0 from another value (1, x,

z).

 The Turn-off delay is associated with a gate output transition to z from another value

(0, 1, x).

 The min value is the minimum delay value that the gate is expected to have.

 The typ value is the typical delay value that the gate is expected to have.

 The max value is the maximum delay value that the gate is expected to have.

User Defined Primitives (UDP):

Verilog has built-in primitives like gates, transmission gates, and switches. This is a

rather small number of primitives; if we need more complex primitives, then Verilog

provides UDP, or simply User Defined Primitives. Using UDP we can model.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xiii

 Combinational Logic

 Sequential Logic

UDP begins with reserve word primitive and ends with endprimitive. Ports/terminals of

primitive should follow. This is similar to what we do for module definition. UDPs should be

defined outside module and endmodule.

UDP port rules:

 An UDP can contain only one output and up to 10 inputs.

 Output port should be the first port followed by one or more input ports.

 All UDP ports are scalar, i.e. Vector ports are not allowed.

 UDPs cannot have bidirectional ports.

 The output terminal of a sequential UDP requires an additional declaration as type

reg.

 It is illegal to declare a reg for the output terminal of a combinational UDP.

 Functionality of primitive (both combinational and sequential) is described inside a

table, and it ends with reserved word 'endtable'. For sequential UDP, we can use

initial to assign an initial value to output.

Note: An UDP cannot use 'z' in the input table

table: It is used for describing the function of UDP. Verilog reserved word table

marks the start of table and reserved word endtable marks the end of table. Each line inside a

table is one condition; when an input changes, the input condition is matched and the output

is evaluated to reflect the new change in input.

initial: This statement is used for initialization of sequential UDPs. This statement

begins with the keyword 'initial'. The statement that follows must be an assignment statement

that assigns a single bit literal value to the output terminal reg.

 Concatenations: are expressed using the brace characters { & }, with commas

separating the expressions within.

o Example: + {a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the results

has 24 bits

 Unsized constant numbers are not allowed in concatenations.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xiv

Abstraction Levels:

 Behavioral Models: Higher level of modeling where behavior of logic is modeled.

 RTL Models : Logic is modeled at register level

 Structural Models: Logic is modeled at both register level and gate level.

Procedural Blocks:

Verilog behavioral code is inside procedure blocks, but there is an exception: some

behavioral code also exist outside procedure blocks.

 initial: initial blocks execute only once at time zero (start execution at time zero).

 always: always blocks loop to execute over and over again; in other words, as the

name suggests, it executes always.

Procedural Assignment Statements:

 Procedural assignment statements assign values to reg, integer, real, or time variables

and cannot assign values to nets (wire data types)

Procedural Group Statements:

If a procedure block contains more than one statement, those statements must be enclosed

within

 Sequential begin - end block

 Parallel fork - join block

When using begin-end, we can give name to that group. This is called named blocks

begin - end

 Group several statements together.

 Cause the statements to be evaluated sequentially (one at a time)

 Any timing within the sequential groups is relative to the previous statement.

 Delays in the sequence accumulate (each delay is added to the previous delay)

 Block finishes after the last statement in the block

fork - join

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xv

 Group several statements together.

 Cause the statements to be evaluated in parallel (all at the same time).

 Timing within parallel group is absolute to the beginning of the group.

 Block finishes after the last statement completes (Statement with highest delay, it can

be the first statement in the block).

Blocking and Nonblocking Assignment Statements:

 Blocking assignments are executed in the order they are coded, hence they are

sequential. Since they block the execution of next statement, till the current statement

is executed, they are called blocking assignments. Assignment are made with "="

symbol.

Example a = b;

 Nonblocking assignments are executed in parallel. Since the execution of next

statement is not blocked due to execution of current statement, they are called

nonblocking statement. Assignments are made with "<=" symbol. Example a <= b;

assign and deassign:

 The assign and deassign procedural assignment statements allow continuous

assignments to be placed onto registers for controlled periods of time. The assign

procedural statement overrides procedural assignments to a register. The deassign

procedural statement ends a continuous assignment to a register.

force and release:

 Another form of procedural continuous assignment is provided by the force and

release procedural statements. These statements have a similar effect on the assign-

deassign pair, but a force can be applied to nets as well as to registers. One can use force

and release while doing gate level simulation to work around reset connectivity problems.

Also can be used insert single and double bit errors on data read from memory.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT xvi

Casex and casez:

 Special versions of the case statement allow the x ad z logic values to be used as

"don't care".

Looping statements:

 Appear inside procedural blocks only; Verilog has four looping statements like any

other programming language.

 The forever loop executes continually, the loop never ends. Normally we use forever

statements in initial blocks.

 The repeat loop executes < statement > a fixed < number > of times

 The while loop executes as long as an < expression > evaluates as true. This is the

same as in any other programming language.

 The for loop is the same as the for loop used in any other programming language.

 Continuous assignment statements drive nets (wire data type). They represent

structural connections.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 1

1. SWITCH LEVEL MODELLING

Program 1

1.1 OBTAIN LOGIC GATE DESIGN OF NOT, NAND, NOR IN CMOS

Aim:-

Design a logic gate in CMOS

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Digital logic circuits are non linear networks that use transistors as electronic

switches to divert one of the supply voltages VDD or 0V to the output. This corresponds to a logic

result of f-1 or f=0.

An important characteristic of a CMOS circuit is the duality that exists between its PMOS

transistors and NMOS transistors. According to the De Morgan's laws based logic, the PMOS

transistors in parallel have corresponding NMOS transistors in series while the PMOS transistors

in series have corresponding NMOS transistors in parallel.

The NOT or the INVERT function is the simplest Boolean operation. It has an input ‗a‘ and

produces output f(a) i.e. it implements logical negation.

An important feature of CMOS is the manner in which complementary FET pair ensures that

always a path from the output to either the power source VDD or ground. To accomplish this, the

set of all paths to the voltage source must be the complement of the set of all paths to ground.

This can be easily accomplished by defining one in terms of the NOT of the other.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 2

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module not1(a,f);

input a;

output f;

supply1 vdd;

supply0 gnd;

pmos p(f,vdd,a);

nmos n(f,gnd,a);

endmodule

OUTPUT

The Truth Table of not gate is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 3

Program 2

OBTAIN LOGIC GATE DESIGN OF NAND IN CMOS

Aim:-

Write Verilog code for two input logic gates

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Digital logic circuits are non linear networks that use transistors as electronic

switches to divert one of the supply voltages VDD or 0V to the output. This corresponds to a logic

result of f=1 or f=0.

An important characteristic of a CMOS circuit is the duality that exists between its PMOS

transistors and NMOS transistors. According to the De Morgan's laws based logic, the PMOS

transistors in parallel have corresponding NMOS transistors in series while the PMOS transistors

in series have corresponding NMOS transistors in parallel.

A NAND2 gate is that it uses two parallel connected pFET‘s while the nFET‘s are in series. The

NAND gate is characterized by an output that is 0 unless both of the inputs are 1.

In a two-input CMOS NAND (NAND2) gate the two series connected nMOS transistors creates

a conducting path between output node and the ground only if both input voltages are set to

VOH i.e. both the parallel pMOS transistors will be off. For all other input combinations, either

one or both of the pMOS transistors will be turned on, while the path of the nMOS transistors

will be cut-off, thus creating a current path between the output node and the power supply

voltage.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 4

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module cmosnand(f,a,b);

input a;

input b;

output f;

wire w1;

supply1 vdd;

supply0 gnd;

pmos p1(f,vdd,a);

pmos p2(f,vdd,b);

nmos n1(f,w1,a);

nmos n2(w1,gnd,b);

endmodule

OUTPUT:

The Truth Table of NAND gate is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 5

Program 3

OBTAIN LOGIC GATE DESIGN OF NOR IN CMOS

Aim:-

a) Write Verilog code for two input logic gates

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: An important characteristic of a CMOS circuit is the duality that exists between its

PMOS transistors and NMOS transistors. According to the De Morgan's laws based logic, the

PMOS transistors in parallel have corresponding NMOS transistors in series while the PMOS

transistors in series have corresponding NMOS transistors in parallel.

The NOR gate has 2 PMOS and 2 NMOS transistors. It uses two parallel connected nFET‘s

while the pFET‘s are in series. The NOR gate is characterized by an output 1 only if both of the

inputs are 1.

When either one or both inputs are high, the nMOS transistor(s) creates a conducting path

between the output node and ground, and the pMOS transistors are cut-off i.e f =0v.. When both

input voltages are low, the nMOS transistors are cut-off and the pMOS transistors create a

conducting path between the output node and the supply voltage VDD thus giving output high.

LOGIC SYMBOL

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 6

LOGIC DIAGRAM

VERILOG CODE

module cmosnor(x,a,b);

input a;

input b;

output f;

wire w1;

supply1 vdd;

supply0 gnd;

pmos p1(w1,vdd,a);

pmos p2(f,w1,b);

nmos n1(f,gnd,a);

nmos n2(f,gnd,b);

endmodule

OUTPUT:

The Truth Table of NOR gate is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 7

Program 4

1.2 OBTAIN OAI AND AOI LOGIC GATES OF THE FUNCTION

12.1 F=[ab+ac+bd]’ ---- AOI

Aim:-

Write Verilog code for AOI F=[ab+ac+bd]‘

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: An important characteristic of a CMOS circuit is its inverting nature which allows

it to construct logic circuits for AOI logic expression using a structured approach.

AOI gates perform one or more AND operations followed by an OR operation and then an

inversion. AOI function is an inverted sum of products ISOP

Construction of AOI cells is particularly efficient using CMOS technology where the total

number of transistor gates can be compared to the same construction using NAND logic or NOR

logic. The complement of AOI Logic is OR-AND-Invert (OAI) logic where the OR gates

precede a NAND gate.

LOGIC SYMBOL

TRUTH TABLE

A B C D F

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 0

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 8

LOGIC DIAGRAM

VERILOG CODE

module aoi(a,b,c,d,f);

input a;

input b;

input c;

input d;

output f;

supply1 vdd;

supply0 gnd;

wire w1,w2,w3,w4,w5;

pmos p1(w1,vdd,a);

pmos p2(w1,vdd,b);

pmos p3(w2,w1,a);

pmos p4(w2,w1,c);

pmos p5(f,w2,b);
pmos p6(f,w2,d);

nmos n1(w3,gnd,b);

nmos n2(f,w3,a);

nmos n3(w4,gnd,c);

nmos n4(f,w4,a);

nmos n5(w5,gnd,d);

nmos n6(f,w5,b);

endmodule

OUTPUT:

The Truth Table of AOI is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 9

Program 5

1.2.2 F=[(a+b)(a+c)(b+d)]’---OAI

AIM:-

Write Verilog code for AOI F=[(a+b)(a+c)(b+d)]‘

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: CMOS logic gates are intrinsically inverting. The output always produces a

NOT operation acting on the input variables. The inverting nature of CMOS logic circuits allows

us to construct logic circuits for AOI and OAI expressions using a structured approach.

OAI logic function implements the operations in the order OR then AND then NOT. An Or-And-

Invert (OAI) CMOS gate is similar to the AOI gate except that it is an implementation of

product-of-sums realization of a function

Behaviors of nMOS and pMOS groups are Parallel-connected nMOS gives OR-NOT operations

whereas Parallel-connected pMOS gives AND-NOT operations Series-connected nMOS results

AND-NOT operations whereas Series-connected pMOS gives OR-NOT.

The OAI are implemented in the following way:

• The N-tree is implemented as follows:

– Each product term is a set of parallel transistors for each input in the term

– All product terms (parallel groups) are put in series

– The complete function is again assumed to be an inverted representation

• The P-tree can be implemented as the dual of the N-tree

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 10

TRUTH TABLE

A B C D F

0 0 0 0 1

0 1 0 1 1

0 1 1 1 0

1 1 0 0 1

1 1 1 1 0

LOGIC DIAGRAM

VERILOG CODE

module oai(a,b,c,d,f);

input a;

input b;

input c;

input d;

output f;

supply1 vdd;

supply0 gnd;

wire w1,w2,w3,w4,w5;

pmos p1(w3,vdd,a);

pmos p2(f,w3,b);

pmos p3(w4,vdd,a);

pmos p4(f,w4,c);

pmos p5(w5,vdd,b);

pmos p6(f,w5,d);

nmos n1(w1,gnd,b);

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 11

nmos n2(w1,gnd,d);

nmos n3(w2,w1,a);

nmos n4(w2,w1,c);

nmos n5(f,w2,a);

nmos n6(f,w2,b);

endmodule

OUTPUT:

The Truth Table of OAI is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 12

Program 6

1.3 TRANSMISSION GATE DESIGN

1.3.1 Design a 2:1 MUX using TRANSMISSION GATE

Aim:-

Write Verilog code for 2:1 mux using Transmission gates.

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: A CMOS Transmission gate is created by connecting an nFET and pFET in

parallel. It has the following characteristics.

» It is a Bi-directional switch

» It Transmit the entire voltage range [0, VDD]

» Both transistors are ON or OFF simultaneously.

» The NMOS switch passes a good zero but a poor 1.

» The PMOS switch passes a good one but a poor 0.

Controlled by gate select signals, s and s

--if s = 1, y = x, switch is closed, transistors are on

– if s = 0, y = unknown (high impedance), switch open, transistors are off

In 2:1 mux when the select signal has a value s=0, one pair of Transmission gate is closed while

other is open giving the first input as output but if s=1 the second input goes as output.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 13

LOGIC SYMBOL

TRUTH TABLE

s F

0 A

1 B

LOGIC DIAGRAM

VERILOG CODE

module mux(a,b,s,f);

input a;

input b;

input s;

output f;

wire sb;

not(sb,s);

cmos tg1(f,a,sb,s);
cmos tg2(f,b,s,sb);

endmodule

OUTPUT: The Truth Table of TRANSMISSION GATE is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 14

Aim:-

Program 7

1.3.2 Design a XOR using TRANSMISSION GATE

Write Verilog code for XOR using transmission gate

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: A CMOS Transmission gate is created by connecting an nFET and pFET in

parallel. It has the following characteristics.

» It is a Bi-directional switch

» It Transmit the entire voltage range [0, VDD]

» Both transistors are ON or OFF simultaneously.

» The NMOS switch passes a good zero but a poor 1.

» The PMOS switch passes a good one but a poor 0.

Controlled by gate select signals, s and s

--if s = 1, y = x, switch is closed, transistors are on

– if s = 0, y = unknown (high impedance), switch open, transistors are off

In XOR gate implementation of transmission gate the input to the top transmission gate is b, this

is inverted and given as input to the second TG2.The input ‗a‘ and its compliment are used to

control the TGs. When a=0 the upper TG is closed and ‗b‘ is passed to the output while a=1

closes the lower TG is closed and ‗b‘ compliment is passed to the output.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 15

LOGIC SYMBOL

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module xortg(a,b,f);

input a;

input b;

output f;

wire ab,bb;

not(ab,a);

not(bb,b);

cmos tg1(f,b,ab,a);

cmos tg2(f,bb,a,ab);

endmodule

OUTPUT:

The Truth Table of XOR TRANSMISSION GATE is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 16

Aim:-

Program 8

1.3.3 Design a XNOR gate using TRANSMISSION GATE

a) Write Verilog code for XNOR using transmission gate

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: A CMOS Transmission gate is created by connecting an nFET and pFET in

parallel. It has the following characteristics.

» It is a Bi-directional switch

» It Transmit the entire voltage range [0, VDD]

» Both transistors are ON or OFF simultaneously.

» The NMOS switch passes a good zero but a poor 1.

» The PMOS switch passes a good one but a poor 0.

Controlled by gate select signals, s and s

--if s = 1, y = x, switch is closed, transistors are on

– if s = 0, y = unknown (high impedance), switch open, transistors are off

An XNOR gate function is obtained by interchanging ‗b‘ and its compliment ‗b‘ from XOR

functions. The output of an XNOR gate is 1 iff the inputs are equal. In XNOR implementation of

transmission gate the input to the top transmission gate is ‗b ,‘ this is inverted and given as input

to the second TG2.The input ‗a‘ and its compliment are used to control the TGs. When a=0 the

upper TG is closed and ‗b‘ is passed to the output while a=1 closes the lower TG is closed and

‗b‘ is passed to the output.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 17

LOGIC SYMBOL

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module xnor1(a,b,f);

input a;

input b;

output f;

wire aa,bb;

not(ab,a);

not(bb,b);

cmos tg1(f,b,a,ab);
cmos tg2(f,bb,ab,a);

endmodule

OUTPUT: The Truth Table of XNOR TRANSMISSION GATE is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 18

Aim:-

Program 9

1.3.4 Design a OR gate using TRANSMISSION GATE

b) Write Verilog code for OR using transmission gate

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: A CMOS Transmission gate is created by connecting an nFET and pFET in

parallel. It has the following characteristics.

» It is a Bi-directional switch

» It Transmit the entire voltage range [0, VDD]

» Both transistors are ON or OFF simultaneously.

» The NMOS switch passes a good zero but a poor 1.

» The PMOS switch passes a good one but a poor 0.

Controlled by gate select signals, s and s

--if s = 1, y = x, switch is closed, transistors are on

– if s = 0, y = unknown (high impedance), switch open, transistors are off

In OR implementation of transmission gate the input to the top transmission gate is ‗b ,‘ and to

the second TG2 is ‗a‘ .The input ‗a‘ and its compliment are used to control the TGs. When a=0

the upper TG is closed and ‗b‘ is passed to the output while a=1 closes the lower TG and ‗a‘ is

passed to the output.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 19

LOGIC SYMBOL

TRUTH TABLE

LOGIC DIAGRAM

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 20

VERILOG CODE

module or1(a,b,f);

input a;

input b;

output f;

wire ab;

not(ab,a);

cmos tg1(f,b,ab,a);

cmos tg2(f,a,a,ab);

endmodule

OUTPUT:

The Truth Table of OR TRANSMISSION GATE is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 21

Program 10

1.4 COMPLEX LOGIC GATES USING CMOS

Aim:-

1.4.1 F=[a+b(c+d)]‘

Design F=[a+b(c+d)]‘ using CMOS

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Complex or combinational logic gates are useful in VLSI system-level design.

Complex gates can be realized at transistor level – which is advantageous as the gate delay is

smaller for one complex gate than for the series connection of several simple gates realizing the

same function.

The realized logic function can be any combination of the NOT, AND, OR functions and there is

always an inversion at the output

Simplest way to construct is to use the PDN and PUN .First the pull-down network (PDN) is

created. The OR function is realized by n-type FETs connected in parallel. The AND function is

realized by n-type FETs connected in series.

Next the pull-up network (PUN) is designed with p-type transistors. The PUN has to create a

current path between the supply rail and the output for every logic 1 of the logic function. This

can be done by creating the dual network of the PDN. In the dual network every series

connection is turned into a parallel connection and vica versa.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 22

TRUTH TABLE

A B C D F

0 0 0 0 1

0 1 0 0 0

1 0 1 0 0

1 1 1 1 0

LOGIC DIAGRAM

VERILOG CODE

module complex(a,b,c,d,f);

input a;

input b;

input c;

input d;

output f;

wire w1,w2,w3;

supply0 gnd;

supply1 vdd;

pmos p1(w2,vdd,b);

pmos p2(w1,vdd,c);

pmos p3(w2,w1,d);

pmos p4(f,w2,a);

nmos n1(w3,gnd,c);

nmos n2(w3,gnd,d);

nmos n3(f,w3,b);

nmos n4(f,gnd,a);

endmodule

OUTPUT: The Truth Table of COMS complex logic is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 23

Aim:-

Program 11

1.4.2 Write Verilog code for SR Latch using CMOS

Design SR Latch using CMOS

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: A latch (also called a flip-flop) is a fundamental component of data storage. A

single latch can hold 1-bit of data, increase that number by many orders of magnitude and you

can create kilo-, mega-, giga-, even tera-bytes of memory

The logic diagram for SR latch can be obtained by using two NOR2 gates. The two NOR gates

each have their output flow into the input of the other. There are two controllable inputs: reset

(R) and set (S), which produce the two outputs: Q and Q(―Q-not‖). That‘s where the SR latch

gets its name – it‘s a set/reset latch.

 Steady: When S and R are both 0, then Q remains steady. It keeps the value it had before.

If it was 0 it‘ll remain 0, if it was 1 it will still be 1.

 Set: Changing S to 1 has the potential to ―set‖ the output of Q. If Q was 0, changing S to

1 will change Q to 1 as well. If Q was already 1, making S=1 will have no effect.

 Reset: Moving the R input from 0 to 1 can ―reset‖ Q. As long as Q was 1, setting R to 1

will change Q to 0. If Q was already 0, though, R won‘t have any effect on it.

 Restricted: When both S and R are 1, we enter restricted territory: our rule that Q

and Q must be complements is broken, as they both go to 0. So we call S=1/R=1 a

restricted combination. In most latch circuits precautions are taken to keep those inputs

from both being 1.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 24

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module srlatch(s,r,q,qb);

input s;

input r;

inout q;

inout qb;

wire w1,w2;

supply0 gnd;

supply1 vdd;

pmos p1(w1,vdd,s);

pmos p2(qb,w1,q);

pmos p3(q,w2,qb);

pmos p4(w2,vdd,r);

nmos n1(qb,gnd,s);

nmos n2(qb,gnd,q);

nmos n3(q,gnd,qb);

nmos n4(q,gnd,q);

endmodule

OUTPUT: The Truth Table of SRLATCH is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 25

Program 12

2. STRUCTURAL GATE LEVEL MODELLING

2.1 OBTAIN FUNCTION F=[a+b+ac+bd]’ using gate level modeling

Aim:-

Design a structural gate level modeling for the AOI F=[a+b+ac+bd]’

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

This logic is constructed using primitive AND and NOR gates that takes the input a, b, c, d and

produce an output of F=[a+b+ac+bd]‘. W1 and w2 are the outputs of AND two gates which inturn

are determined by the input values.

LOGIC SYMBOL

TRUTH TABLE

A B C D F

0 0 0 0 1

0 1 0 1 1

1 0 1 0 0

1 1 1 1 0

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 26

LOGIC DIAGRAM

VERILOG CODE

module func(a,b,c,d,f);

input a;

input b;

input c;

input d;

output f;

wire w1,w2;

and a1(w1,a,c);

and a2(w2,b,d);

nor n(f,w1,w2,a,b);

endmodule

OUTPUT: The Truth Table of OAI is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 27

2.1 OBTAIN FUNCTION F=[a+b+ac+bd]’ using gate level modeling with delay

VERILOG CODE

module func1(a,b,c,d,f);

input a;

input b;

input c;

input d;

input f;

wire w1,w2;

and #(100,200) a1(w1,a,c);

and #(100,200) a2(w2,b,d);
nor #(100,200) n(f,w1,w2,a,b);

endmodule

OUTPUT:

The Truth Table of OAI WITH DELAY is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 28

Aim:-

2.2 DESIGN HALF ADDER

Program 13

Design a structural gate level modeling for the half adder

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

A combinational circuit that performs the addition of two bits is called a half-adder. This circuit

needs two binary inputs and produces two binary outputs. One of the input variables designates

the augend and other designates the addend bits; the output variables designate sum and carry.

sum= a b.

carry = ab.

A combination of XOR gate and AND gate can be used to develop the circuit. Output of XOR

gate is sum bit and that of AND gate is carry bit.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 29

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module half(a,b,s,c);

input a;

input b;

output s;

output c;

xor x(s,a,b);

and a1(c,a,b);

endmodule

OUTPUT:

The Truth Table of HALF ADDER is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 30

2.2 DESIGN HALF ADDER with delay

VERILOG CODE

module half(a,b,s,c);

input a;

input b;

output s;

output c;

xor #(100,200) x(s,a,b);
and #(100,200) a1(c,a,b);

endmodule

OUTPUT:

The Truth Table of HALF ADDER WITH DELAY is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 31

Aim:-

2.3 DESIGN FULL ADDER

Program 14

Design a structural gate level modeling for the full adder using two half adders and OR

gate

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

A combinational circuit that performs the addition of 3 bits is called a full adder. This circuit

accepts 3 binary inputs and produces two binary outputs. The two outputs are denoted by sum

and carry.

sum= a b c
carry = ab + bc+ca

A full can also be built from two half adders and an OR gate..

LOGIC SYMBOL

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 32

LOGIC DIAGRAM

VERILOG CODE

module fa(a,b,cin,s,c);

input a;

input b;

input cin;

output s;

output c;

wire w1,w2,w3;

half h1(a,b,w1,w2);

half h2(w1,cin,s,w3);

or r(c,w3,w2);

endmodule

OUTPUT:

The Truth Table of FULL ADDER is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 33

2.3 DESIGN FULL ADDER WITH DELAY

VERILOG CODE

module fa(a,b,cin,s,c);

input a;

input b;

input cin;

output s;

output c;

wire w1,w2,w3;

half #(100,200) h1(a,b,w1,w2);

half #(100,200) h2(w1,cin,s,w3);

or #(100,200) r(c,w3,w2);

endmodule

OUTPUT:

The Truth Table of FULL ADDER WITH DELAY is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 34

Aim:-

Program 15

2.4 IMPLEMENT 2:1 MUX USING TRI STATE BUFFERS

Design a structural gate level modeling for 2:1 MUX using tri state buffer.

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

A tri-state buffer is similar to a buffer, but it adds an additional "enable" input that controls

whether the primary input is passed to its output or not. If the "enable" inputs signal is true, the

tri-state buffer behaves like a normal buffer. If the "enable" input signal is false, the tri-state

buffer passes a high impedance (orhi-Z) signal, which effectively disconnects its output from the

circuit.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 35

TRUTH TABLE

S F

0 A

1 B

LOGIC DIAGRAM

VERILOG CODE

module trimux(a,b,en,f);

input a;

input b;

input en;

output f;

bufif0(f,a,en);

bufif1(f,b,en);

endmodule

OUTPUT:

The Truth Table of 2:1 Mux Using Tri State Buffer Is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 36

2.4 IMPLEMENT 2:1 MUX USING TRI STATE BUFFERS WITH DELAY

VERILOG CODE

module trimux(a,b,en,f);

input a;

input b;

input en;

output f;

bufif0 #(100,200) (f,a,en);
bufif1 #(100,200) (f,b,en);

endmodule

OUTPUT:

The Truth Table of 2:1 Mux Using Tri State Buffer with delay is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 37

Program 16

2.5 IMPLEMENT 4:1 MUX USING 2:1 MULTIPLEXERS

Aim:-

Design a structural gate level modeling for 4:1 MUX using 2:1 MUX and tri state buffer.

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

A tri-state buffer is similar to a buffer, but it adds an additional "enable" input that controls

whether the primary input is passed to its output or not. If the "enable" inputs signal is true, the

tri-state buffer behaves like a normal buffer. If the "enable" input signal is false, the tri-state

buffer passes a high impedance (orhi-Z) signal, which effectively disconnects its output from the

circuit.

A 4-to-1 Multiplexers has 4-data input lines ,two select lines and single output line. Three 2:1

Mux can be used to make a 4:1 mux. The first and second mux uses s1 as the select line and third

uses s0 as the select line.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 38

TRUTH TABLE

LOGIC DIAGRAM

VERILOG CODE

module trimux4(a,b,c,d,s0,s1,f);

input a;

input b;

input c;

input d;

input s0;

input s1;

output f;

wire w1,w2;

trimux t1(a,b,s0,w1);

trimux t2(c,d,s0,w2);

trimux t3(w1,w2,s1,f);

endmodule

OUTPUT: The Truth Table of 4:1 MUX USING 2:1 MULTIPLEXER is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 39

2.5 IMPLEMENT 4:1 MUX USING 2:1 MULTIPLEXERS WITH DELAY

VERILOG CODE

module trimux4(a,b,c,d,s0,s1,f);

input a;

input b;

input c;

input d;

input s0;

input s1;

output f;

wire w1,w2;

trimux #(100,200) t1(a,b,s0,w1);

trimux #(100,200) t2(c,d,s0,w2);
trimux #(100,200) t3(w1,w2,s1,f);

endmodule

OUTPUT: The Truth Table of 4:1 Mux Using 2:1 Multiplexer with delay is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 40

Program 17

2.6 SR LATCH

Aim:-

Design a structural gate level modeling for SR Latch.

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

The logic diagram for SR latch can be obtained by using two NOR2 gates.The two NOR gates

each have their output flow into the input of the other. There are two controllable inputs: reset

(R) and set (S), which produce the two outputs: Q and Q(―Q-not‖). That‘s where the SR latch

gets its name – it‘s a set/reset latch

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 41

LOGIC DIAGRAM

VERILOG CODE

module srg(s,r,q,qb);

input s;

input r;

inout q;

inout qb;

nor n1(qb,s,q);
nor n2(q,r,qb);

endmodule

OUTPUT: The Truth table of SR latch is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 42

2.6 IMPLEMENT SR LATCH WITH DELAY

VERILOG CODE

module srg(s,r,q,qb);

input s;

input r;

inout q;

inout qb;

nor #(100,200) n1(qb,s,q);

nor #(100,200) n2(q,r,qb);

endmodule

OUTPUT: The Truth Table of SR latch with delay is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 43

Program 18

2.7 IMPLEMENT D – LATCH

Aim:-

Design a structural gate level modeling for D Latch.

Software Requirements:

Synthesis tool: Xilinx Project
navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Structural modeling describes a digital logic network in terms of the components

that make up the system. Gate level modeling is based on using primitive logic gates and

specifying how they are wired together.

A latch (also called a flip-flop) is a fundamental component of data storage. A single latch can

hold 1-bit of data, increase that number by many orders of magnitude and you can create kilo-,

mega-, giga-, even tera-bytes of memory

TRUTH TABLE

LOGIC DIAGRAM

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 44

VERILOG CODE

module dlatch(d,db,q,qb);

input d;

input db;

inout q;

inout qb;

not (db,d);

nor n1(qb,d,q);

nor n2(q,db,qb);

endmodule

OUTPUT:

The Truth Table of D-latch is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 45

2.7 IMPLEMENT D – LATCH WITH DELAY

VERILOG CODE

module dlatch(d,db,q,qb);

input d;

input db;

inout q;

inout qb;

not #(100,200) (db,d);

nor #(100,200) n1(qb,d,q);

nor #(100,200) n2(q,db,qb);

endmodule

OUTPUT: The Truth Table of D-latch with delay is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 46

Program 19

3. HIERARCHICAL MODELING

3.1 CONSTRUCT A 4 INPUT AND-GATE USING 2-INPUT NAND & NOR GATES

Aim:-

Design a 4 input and gate using 2-input nand & nor gates.

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description:

The concept of primitive, modules and instancing provides the basis for hierarchical design in

Verilog. Complex systems can be described in Verilog HDL using mixed-design style modeling.

This modeling style supports hierarchical description

Direct instantiation and connection of models from a separate calling model to form structural

hierarchy in a design. A module may be declared anywhere in a design relative to where it is

called.

The gate level and switch can be used separately or intermixed within a single module.

An AND gate can be created using already created switch level modules for NAND2 and NOR2.

These gates can be instantiated to create the hierarchical design..

TRUTH TABLE

A B C D F

0 0 0 0 0

0 1 0 1 0

1 0 1 0 0

1 1 1 1 1

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 47

LOGIC DIAGRAM

VERILOG CODE

module and4(a,b,c,d,f);

input a;

input b;

input c;

input d;

output f;

wire w1,w2;

nand1 n1(a,b,w1);// Instantiation of switch level NAND

nand1 n2(c,d,w2);

nor1 n3(w1,w2,f);

endmodule

OUTPUT: The Truth Table of 4 Input And-Gate Using 2-Input Nand & Nor Gate is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 48

Program 20

3.2 CONSTRUCT AN 2:4 ACTIVE HIGH DECODER USING CMOS 2-INPUT NOR

& NOT GATES

Aim:-

Design an 2:4 active high decoder using CMOS 2-input nor & not gates

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description:

The concept of primitive, modules and instancing provides the basis for hierarchical design in

Verilog. Complex systems can be described in Verilog HDL using mixed-design style modeling.

This modeling style supports hierarchical description

Direct instantiation and connection of models from a separate calling model to form structural

hierarchy in a design. A module may be declared anywhere in a design relative to where it is

called.

The gate level and switch can be used separately or intermixed within a single module.

A decoder is a circuit which has n inputs and 2n outputs, and outputs 1 on the wire corresponding

to the binary number represented by the inputs

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 49

TRUTH TABLE

S1 S0 D0 D1 D2 D3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

LOGIC DIAGRAM

VERILOG CODE

module decode24(s0,s1,d0,d1,d2,d3);

input s0;

input s1;

output d0;

output d1;

output d2;

output d3;

wire s0b,s1b;

not1 n1(s0,s0b);

not1 n2(s1,s1b);

nor1 n3(s1,s0,d0);

nor1 n4(s1b,s0,d1);

nor1 n5(s1,s0b,d2);

nor1 n6(s1b,s0b,d3);

endmodule

OUTPUT: The Truth Table of 2:4 active high decoder using CMOS 2-input nor & not gates is

verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 50

Program 21

3.2 CONSTRUCT SR LATCH USING HIERARCHICAL MODELING

Aim:-

.

Design a SR Latch

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description:

The concept of primitive, modules and instancing provides the basis for hierarchical design in

Verilog. Complex systems can be described in Verilog HDL using mixed-design style modeling.

This modeling style supports hierarchical description

Direct instantiation and connection of models from a separate calling model to form structural

hierarchy in a design. A module may be declared anywhere in a design relative to where it is

called.

The gate level and switch can be used separately or intermixed within a single module.

A latch (also called a flip-flop) is a fundamental component of data storage. A single latch can

hold 1-bit of data, increase that number by many orders of magnitude and you can create kilo-,

mega-, giga-, even tera-bytes of memory

The logic diagram for SR latch can be obtained by using two NOR2 gates.The two NOR gates

each have their output flow into the input of the other. There are two controllable inputs: reset

(R) and set (S), which produce the two outputs: Q and Q(―Q-not‖). That‘s where the SR latch

gets its name – it‘s a set/reset latch.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 51

LOGIC SYMBOL

TRUTH TABLE

VERILOG CODE

module srh(s,r,q,qb);

input s;

input r;

inout q;

inout qb;

nor1 n1(s,q,qb);
nor1 n2(r,qb,q);

endmodule.

OUTPUT: The Truth Table of SR Latch Using Hierarchical Modeling is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 52

Program 22

3.2 CONSTRUCT D LATCH USING HIERARCHICAL MODELING

Aim:-

Design a D Latch

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE 14.7

Simulation tool: ModelSim
Simulator

Description:

The concept of primitive, modules and instancing provides the basis for hierarchical design in

Verilog. Complex systems can be described in Verilog HDL using mixed-design style modeling.

This modeling style supports hierarchical description

Direct instantiation and connection of models from a separate calling model to form structural

hierarchy in a design. A module may be declared anywhere in a design relative to where it is

called.

The gate level and switch can be used separately or intermixed within a single module.

A latch (also called a flip-flop) is a fundamental component of data storage. A single latch can

hold 1-bit of data, increase that number by many orders of magnitude and you can create kilo-,

mega-, giga-, even tera-bytes of memory

In the verilog code not gate is called using switch level and nor gates are called using gate level.

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 53

LOGIC DIAGRAM

VERILOG CODE

module dh(d,db,q,qb);

input d;

input db;

inout q;

inout qb;

not1 n(d,db);

nor1 n1(d,q,qb);

nor1 n2(db,qb,q);

endmodule

OUTPUT: The Truth Table of D Latch using hierarchical modeling is verified.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 54

3. REGISTER TRANSFER LEVEL (RTL) MODELING

REGISTER TRANSFER LEVEL (RTL) MODELING

 At RTL digital design abstraction, registers are the basic components (primitives).

 Data paths are defined by their registers and the operations performed on the data stored

in the registers.

 An elementary operation performed on data stored in a register is called micro operation

 Copying the contents of one register into another

 Adding the contents of two registers

 Storing result into a register

 Shift and count

 Incrementing the contents of a register.

The movement and processing of the data stored in registers are termed register transfer

operations or RTL operations

 An RTL operation can be considered as a combination of the elementary micro

operations.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 55

 It is a fact that almost all synchronous sequential digital systems can be viewed as a set
of registers and operations that transfer data.

 These RTL operations of a digital system are completely specified by three basic

elements:

 The register set,

 The operations that are performed on data in registers

 The sequence of the operations.

In other words, the digital system can be described and modeled by a RTL Control Sequence

(RTLCS for short) or RTL code/program.

 This RTL code uses an associated notational system, called Register

Transfer Notation (RTN).

 Operations in RTN are almost always of the form:

regA ← ƒ(reg1, reg2, …., regn)

BEHAVIORALMODELING

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling

techniques are relatively detailed. They require some knowledge of how hardware or hardware

signals work. The abstraction in this modeling is as simple as writing the logic in C language.

This is a very powerful abstraction technique. All that the designer needs is the algorithm of the

design, which is the basic information for any design.

Most of the behavioral modeling is done using two important constructs: initial and always. All

the other behavioral statements appear only inside these two structured procedure constructs.

initial Construct

Statements which come under the initial construct constitute the initial block. The initial block is

executed only once in the simulation, at time 0. If there is more than one initial block, then all the

initial blocks are executed concurrently. The initial construct is used as follows:

Initial initial

begin or

reset = 1'b0; clk = 1'b1;

clk = 1'b1;

end

In the first initial block there is more than one statement hence they are written between begin

and end. If there is only one statement then there is no needs to put begin and end.

always Construct

Statements which come under the always construct constitute the always block. The always

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 56

block starts at time 0, and keeps on executing all the simulation time. It works like a infinite

loop. It is generally used to model a functionality that is continuously repeated.

Always initial

clk = 1'b0; #5 clk = ~clk;

The above code generates a clock signal clk, with a time period of 10 units. The initial blocks

initiates the clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we get a

time period of 10 units.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 57

Program 23

4.1 Write Verilog code to implement 4:1 multiplexer using RTL and Behavioral modeling.

Aim :- Design 4:1 multiplexer using RTL and Behavioral modeling.

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: 4:1 mux has four inputs lines I0 to I3 and one output F. It consists of two select

lines s0 and s1. It is implemented using three 2:1 mux.

RTL (Register transfer level) is step by step process which uses low level keywords, it uses

assign as a keyword, Behavioral modeling is architectural modeling .It is module based or object

based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 58

LOGICAL DIAGRAM

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 59

RTL CODE

module rtl41(s,i,f);

input [1:0]s;

input [3:0]i;

output f;

assign f=(~s[0]& ~s[1]& i[0]|~s[0]& s[1]& i[1]|

s[0]& ~s[1]& i[2]|s[0]& s[1]& i[3]);

endmodule

BEHAVIOURAL CODE

module b41(s,i,f);

input [0:0] s;

input [3:0] i;

output f;

reg f;

always @(s)

case(s)

0:f=i[0];

1:f=i[1];

2:f=i[2];

3:f=i[3];

endcase

endmodule

OUT PUT: The Truth Table of 4:1 mux is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 60

Program 24

4.2 Write Verilog code to implement 2:4 Active High Decoder using RTL and

Behavioral modeling

Aim Design 2:4 Active High Decoder using RTL and Behavioral modeling.

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Decoder is quite similar to demux 2:4 decoder take 2 inputs (s0 & s1) and 4

outputs (d0,d1,d2,d3)

RTL (Register transfer level) is step by step process which uses low level keywords, it uses

assign as a keyword , Behavioral modeling is a architectural modeling .It is module based or

object based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 61

LOGIC DIAGRAM

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 62

RTL CODE:

module rtl24(s,d0,d1,d2,d3);

input [1:0] s;

output d0;

output d1;

output d2;

output d3;

assign d0=(~s[0]&~s[1]);

assign d1=(s[0]&~s[1]);

assign d2=(~s[0]&s[1]);

assign d3=(s[0]&s[1]);

endmodule

Behavioral code

module b24(s,d,f);

input [1:0]s;

output [3:0]d;

output f;

reg f;

always @(s)

case(s)

8:f=d[0];

4:f=d[1];

2:f=d[2];

1:f=d[3];

endcase

endmodule

OUT PUT: The Truth Table of 2:4 active high decoder is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 63

Program 25

4.3 Write Verilog code to implement 4-BIT Priority encoder using RTL and Behavioral

modeling

AIM: Design a 4-BIT Priority encoder using RTL and Behavioral modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project
navigator – ISE 14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: A 4-bit priority encoder basically converts the 4 bit input into a binary

representation. A common user of priority encoder is for interrupt controller to select the most

critical of the multiple interrupt requests

RTL (Register transfer level) is step by step process which uses low level keywords, it uses

assign as a keyword, Behavioral modeling is a architectural modeling .It is module based or

object based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 64

LOGIC DIAGRAM

TRUTH TABLE

i3 i2 i1 i0 ideal y0 y1

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 X 0 0 1

0 1 X X 0 1 0

1 x X X 0 1 1

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 65

RTL CODE

module priorityb(i0,i1,i2,i3,y0,y1,idle);

input [3:0] i;

output [1:0] y;
output idle;

output y0;

outputy1;

wire h1,h2,h3,h4;
assign h1=~(i3)&~(i2)&(i1)&(i0);

assign h2=~(i3)&~(i2)&(i1);
assign h3=~(i3)&(i2);

assign h4=(i3);

assign idle=~(i3)&~(i2)&~(i1)&~(i0);

assign y1=h2|h4;
assign y0=h3|h4;

endmodule

BEHAVIORAL MODELING

module priorityb(i,y,idle);

input [3:0] i;
output [1:0] y;

output idle;

reg[1:0]y;

reg idle;
always @ (i)

if(i==0)

begin
idle=1;

y[0]=0;

y[1]=0;
end
else if(i[3]==1)

begin

idle=0;

y[0]=1;
y[1]=1;

end
else if(i[2]==1)

begin

idle=0;

y[0]=1;

y[1]=0;

end
else if(i[1]==1)

begin

idle=0;

y[0]=0;

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 66

y[1]=1;

end
else if(i[0]==1)

begin

idle=0;
y[0]=0;

y[1]=0;

end
endmodule

OUT PUT: The Truth Table of 4 bit priority encoder is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 67

Program 26

4.4 Write Verilog code to implement JK Flip Flop for negative edge triggered using

RTL and Behavioral modeling

AIM: Design JK FILP FLOP for –ve edge triggered using RTL and Behavioral modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project

navigator – ISE 14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: JK filpflop is the most versatile of the basic flip-flops. It has the input

following characters of the clocked D-flip-flop, but has two inputs labeled J and K . If J and K

are different then the output Q takes the value of J at the nest clock edge.

RTL (Register transfer level) is step by step process which uses low level keywords, it uses

assign as a keyword , Behavioral modeling is a architectural modeling .It is module based or

object based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 68

LOGIC DIAGRAM

TRUTH TABLE

CLK PRESET clear J K q Qb

1 1 0 X X 0 1

1 1 1 0 0 qp qbp

1 1 1 0 1 0 1

1 1 1 1 0 1 0

1 1 1 1 1 1/0 1/0

RTL CODE

module jk(j,k,pr,clr,clk,q,qb);

input j;

input k;

input pr;

input clr;

input clk;

output q;

output qb;

wire w1,w2,w3,w4,w5,w6;

assign w1=~(j&qb&clk);

assign w2=~(k&q&clk);

assign w3=~(w1&pr&w4);

assign w4=~(w2&clr&w3);

assign w5=~(w3&(~clk));

assign w6=~(w4&(~clk));

assign q=~(w5&qb);

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 69

assign qb=~(w6&q);

endmodule

OUT PUT: The Truth Table of negative edge triggered JK flipflop is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 70

Program 27

4.5 Write Verilog code to implement D FILP FLOP using RTL

AIM: Design D FILP FLOP using RTL modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project
navigator – ISE 14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: D flip-flop is also known as data or delay flip-flop. This flip-flop captures the

value of the D-input at the definite portion of the clock cycle. That captured value of the D

becomes the output Q. IT can be viewed as a memory cell, a zero order hold or delay line. D flip-

flop forms the basis for the shift register which are an essential part of many electronic devices.

RTL (Register transfer level) is step by step process which uses low level keywords, it uses

assign as a keyword, Behavioral modeling is a architectural modeling .It is module based or

object based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 71

LOGIC DIAGRAM

TRUTH TABLE

RTL CODE

module dp(d,db,pr,clr,clk,q,qb);

input d;
input db;

input pr;

input clr;
input clk;

output q;

output qb;
wire w1,w2,w3,w4,w5,w6;

assign db=~(d);

assign w1=~(d&qb&(~clk));

assign w2=~(db&q&(~clk));
assign w3=~(w1&pr&w4);

assign w4=~(w2&clr&w3);

assign w5=~(w3&clk);
assign w6=~(w4& clk);

assign q=~(w5&qb);

assign qb=~(w6&q);

endmodule

OUT PUT: The Truth Table of D Flip Flop is verified

CLK PRESET clear

1 1 0

1 1 1

d db q qb

0 1 0 1

1 0 1 0

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 72

Program 28

4.6 Write Verilog code to implement T FILP FLOP using RTL modeling

AIM: Design T FILP FLOP using RTL modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project
navigator – ISE

Simulation tool: ModelSim
Simulator

DESCRIPTION: T – Flip flop is similar to D-ff to some extent. The only difference is

that D-flip flop is uses a delay line while T-flipflop uses a toggle. If the T –input is high

the flipflop changes the state (toggles).Whenever the clock input is high if the T input is

low the ff holds the previous value.

RTL (Register transfer level) is step by step process which uses low level keywords, it

uses assign as a keyword, Behavioral modeling is a architectural modeling .It is module

based or object based.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 73

LOGIC DIAGRAM

TRUTH TABLE

pr clr clk T q qb

1 0 1 0 0 1

1 1 1 1 1 1

RTL CODE

module tff(t,pr,clr,clk,q,qb);

input t;

input pr;
input clr;

input clk;
output q;

output qb;

wire w1,w2,w3,w4,w5,w6;

assign w1=~(t&qb&(~clk));
assign w2=~(t&q&(~clk));

assign w3=~(w1&pr&w4);

assign w4=~(w2&clr&w3);
assign w5=~(w3&clk);

assign w6=~(w4& clk);

assign q=~(w5&qb);

assign qb=~(w6&q);
endmodule

OUT PUT: The Truth Table of T Flip Flop is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 74

Program 29

4.7 Write Verilog code to implement 4 BIT LOADABLE SISO/PIPO shift

register using RTL modeling

AIM: Design 4 BIT LOADABLE SISO/PIPO shift register using RTL modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project
navigator – ISE 14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: Shift register can have both parallel and serial inputs and outputs.

These are often configured as ―serial in‖ & ―serial out‖ (SISO) OR ― parallel in , serial

out ‖(PIPO).

A basic four-bit shift register can be constructed using four D flip-flops. Serial-in,

serial-out shift registers delay data by one clock time for each stage. They will store a

bit of data for each register. The operation of the circuit is as follows. If load =0 the

register is first cleared, forcing all four outputs to zero. The input data is then applied

sequentially to the D input of the first flip-flop on the left. During each clock pulse,

one bit is transmitted from left to right

If load =1 the circuit behaves as PIPO. For parallel in - parallel out shift registers, all

data bits appear on the parallel outputs immediately following the simultaneous entry of

the data bits.

RTL (Register transfer level) is step by step process which uses low level keywords, it

uses assign as a keyword, Behavioral modeling is a architectural modeling .It is module

based or object based.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 75

LOGIC DIAGRAM

TRUTH TABLE

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 76

RTL CODE

module siso(si,pr,clr,clk,p,load,q);
input si;

input pr;

input clr;
input clk;

input [3:0] p;

input load;
output [3:0] q;

wire w1,w2,w3,w4;
assign w1=((si&(~load))||(load&p[3]));
assign w2=((q[3]&(~load))||(load & p[2]));

assign w3=((q[2] & (~load))||(load & p[1]));

assign w4=((q[1] & (~load))||(load & p[0]));
dp d1(w1,pr,clr,clk,q[3],qb[3]);

dp d2(w2,pr,clr,clk,q[2],qb[2]);
dp d3(w3,pr,clr,clk,q[1],qb[1]);
dp d4(w4,pr,clr,clk,q[0],qb[0]);

endmodule

NOTE: For PIPO output is same as input.

OUTPUT: The truth table of SISO/PIPO is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 77

Program 30

4.9 Implement Ripple Carry Adder using RTL and Behavioral Modeling

Aim : Write Verilog code to implement Ripple Carry Adder using RTL and Behavioral

modeling

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

Description: Ripple carry adder A ripple carry adder is a digital circuit that produces

the arithmetic sum of two binary numbers. It can be constructed with full adders

connected in cascaded (see section 2.1), with the carry output from each full adder

connected to the carry input of the next full adder in the chain. Below figure shows the

inter connection of four full adder (FA) circuits to provide a 4-bit ripple carry adder.

From that the input is from the right side because the first cell traditionally

represents the least significant bit (LSB). Bits a0and b0 in the figure represent the least

significant bits of the numbers to be added. The sum output is represented by the bits

s0-s3

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 78

RTL CODE:

Module rtl rc(c,c4,a,b,c0)

input[3:0]a,b;

input c0;

output[3:0]s,c4;

assign{c4,s}=a+b+c0;

endmodule

Behavioural modelling

module rip(a,b,c0,s,c4)

input[3:0]a,b;

input c0;

output[3:0]s,c4;

regc4;

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 79

regs;

always @ (a:b:c0);

begin

(s,c4)= a+b+c0;

end

endmodule

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 80

Program 31

4.8 Write Verilog code to implement 4 bit carry look ahead (CLA) using RTL

and Behavioral modeling

AIM: Design a 4bit carry look ahead (CLA) using RTL and Behavioral modeling

SOFTWARE REQUIREMENTS:

Synthesis tool: Xilinx Project

navigator – ISE

14.7

Simulation tool: ModelSim
Simulator

DESCRIPTION: The carry look ahead adder (CLA) solves the carry delay problem by

calculating the carry signal in advance based on the inputs signals Or It is used to

decrease calculation time in adder units.

Ci+1=Gi +Pi-Ci

Si = PiΘCi

Gi =aibi

Pi =ai Θbi

Ci+1=aibi+Ci(aiΘbi)

Where Gi---carry generate then

Pi ----carry propagate

RTL (Register transfer level) is step by step process which uses low level keywords, it

uses assign as a keyword, Behavioral modeling is a architectural modeling .It is module

based or object based.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 81

LOGIC SYMBOL

LOGIC DIAGRAM

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 82

TRUTH TABLE

a b c0 s c4

1 1 0 0 1

0 0 0 0 0

1 0 0 1 0

0 1 0 0 1

RTL CODE

module CLA _4b(sum ,c4, a,b,c0);
input [3:0] a,b;

input c0;
output [3:0] sum;

output_4;

wire p0, p1,p2,p3,g0,g1,g2,g3,c1,c2,c3,c4;

assign

p0=a[0]^b[0];

p1=a[1]^b[1];

p2=a[2]^b[02];
p3=a[3]^b[3];

g0=a[0]&b[0];

g1=a[1]&b[1];
g2=a[2]&b[02];
g3=a[3]&b[3];

assign

c1=g0|(p0&c0);
c2=g1|(p1&g0)|(p1&p0&c0);

c3=g2|(p2&g1)|(p2&p1&g0)|(p2&p1&p0&c0);

assign
sum[0]=p0^c0;

sum[1]=p1^c1;

sum[2]=p2^c2;
sum[3]=p3^c3;

c_4=c4

endmodule

OUTPUT: The Truth Table of CLA is verified

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 83

Program 32

4.10 Write Verilog code to implement 4X4 Register Based Multiplier using RTL

and Behavioral modeling

Aim: Design 4X4 register based multiplier using RTL and Behavioral modeling

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: Binary multiplication is based on the basic operations 0 x 0 =0 ; 0 x 1=0;

1x0=0; 1x1=1. Multiplication is by a factor of 2m can be accomplished using a ShL-m

operations on a register.

While multipliying ‗n‘ bits we specify a word of length of n=4 with input values

a=a3a2a1a0 and b=b3b2b1b0. The product axb is given by 8 bit result

P= p7p6p5p4p3p2p1p0

Each bit ‗bi‘ multiplies the multiplicand ‗a‘ on a bit by bit basis.

RTL (Register transfer level) is step by step process which uses low level keywords, it

uses assign as a keyword, Behavioral modeling is a architectural modeling .It is module

based or object based.

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 84

RTL CODE

module regmul(a,b,p)

input[3:0] a,b ;

output[7:0] p;

Wire[7:0] w1,w2,w3,w4;

assign w1= a*b[0]*1;

assign w2= a*b[1]*2;

assign w3= a*b[2]*4;

assign w4= a*b[3]*8;

assign p= w1|w2|w3|w4;

endmodule

BEHAVIOURAL CODE

module regmul(a,b,p)

input[3:0] a,b ;

output[7:0] p;

Wire[7:0] w1,w2,w3,w4;

Always @ (a & b)

begin

w1= a*b[0]*1;

w2= a*b[1]*2;

w3= a*b[2]*4;

w4= a*b[3]*8;

p= w1|w2|w3|w4;

end

endmodule

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 85

Array Multiplier

Program 33

4.11 Aim : implement Array multiplier Using RTL modeling

Software Requirements:

Synthesis tool: Xilinx Project

navigator – ISE
14.7

Simulation tool: ModelSim
Simulator

Description: An array multiplier accepts the multiplier and multiplicand which uses an

array of cells to calculate the bit products of aj bk individually in parallel manner.

LOGIC SYMBOL

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 86

LOGIC DIAGRAM

RTL CODE

Modue artl(a,b,p);

Input [3:0]a;

Input [3:0]b;

VLSI DESIGN LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 87

Output [7:0] p;

Wire w0,w1,w2,w3,w4,w5;

Wire[11:0] c;

Assign p[0]=a[0]&b[0];

Half n1 ((a[0]&b[1]),(a[1]&b[0]),p[1],c[0]);

Half n2 ((a[1]&b[1]),(a[2]&b[0]),w0,c[1]);

Assign{c[3],p[2]}=w0 + (a[0]&b[2]) +c[0];

Half n3 ((a[2]&b[1]),(a[3]&b[0]),w1,c[3]);

Assign{c[4],w2}=w1 + (a[1]&b[2]) +c[1];

Assign{c[5],p[3]}=w2 + (a[0]&b[3]) +c[2];

Assign{c[6],w3}= (a[3]&b[1]) +(a[2]&b[2]+c[3]);

Assign{c[7],w4}=w3 + c[4]+(a[1]&b[3]);

Half n4 (w4,c[5],p[4],c[8]);

Assign{c[10],p[5]}=w5+c[7]+c[8];

Assign{c[11],p[6]}=(a[3]&b[3])+c[9]+c[10];

Assign p[7]=c[11];

endmodule

Behavioural Code

module abm(a,b,p)

input [3:0] a,b;

output[7:0] p; reg[7:0] p;

wire[7:0]w, reg wire [7:0] w;

always @ (a & b)

begin

w1 = a * b [0] *1 ;

w1 = a * b [0] *1 ;

w2 = a * b [1] *2 ;

w1 = a * b [2] *4 ;

w1 = a * b [3] *8 ;

end

endmodule

INFORMATION TECHNOLOGY DEPARTMENT 88

VLSI DESIGN LAB MANUAL

Program 34

LAYOUT DESIGNING [DSCH2 & MICROWIND2]

Obtain Layout Design Of Not Gate In CMOS

Aim: Implement Layout Design Of Not Gate In CMOS

Software Requirements:

Synthesis tool: Dsch 2

Simulation tool: microwind 2

PROCEDURE:

1. Click on open tab of Dsch2,), inside the library create a New file name (Ex:

xxx.sch).

2. Design the CMOs equivalent of an Inverter by dragging and dropping required

symbol.

3. Click on file---> Make Verilog file .

4. Click on simulate tab ---Start Simulate.

5. Open Microwind

6. Click on File---xxx.sch file(created using DSch2)

7. Click on Compile tab --- compile verilog file

8. Compile and close

INFORMATION TECHNOLOGY DEPARTMENT 89

VLSI DESIGN LAB MANUAL

Program 34

Inverter(NOT)

CMOS DIAGRAM OF Inverter(NOT)

INFORMATION TECHNOLOGY DEPARTMENT 90

VLSI DESIGN LAB MANUAL

LAYOUT OF NOT GATE

INFORMATION TECHNOLOGY DEPARTMENT 91

VLSI DESIGN LAB MANUAL

Program 35

CMOS DIAGRAM FOR 2 INPUT NAND GATE

INFORMATION TECHNOLOGY DEPARTMENT 92

VLSI DESIGN LAB MANUAL

LAYOUT OF NAND GATE

INFORMATION TECHNOLOGY DEPARTMENT 93

VLSI DESIGN LAB MANUAL

Program 36

CMOS DIAGRAM OF NOR GATE

INFORMATION TECHNOLOGY DEPARTMENT 94

VLSI DESIGN LAB MANUAL

LAYOUT OF 2 INPUT NOR GATE

INFORMATION TECHNOLOGY DEPARTMENT 95

VLSI DESIGN LAB MANUAL

Annexure – I

List of programs according to O.U. curriculum

BIT 431

With Effect From the Academic Year 2013-14

VLSI DESIGN LAB

Instruction 4 Periods

per week

Duration of University Examination 3Hours

University Examination 75Marks

Sessional 25 Marks

1. Switch level modeling using Verilog

a) Logic gates b) AOl and OAI gates

c) Transmission gate d) Complex logic gates using CMOS

2. Structural Gate-level Modeling [With and without delay]— Digital circuits using

gate primitives—using Verilog.

a) AOl gate b) Half adder and full adders

c) MUX using buffers d) S-R latch etc.

3. Mixed gate —level and Switch-level modeling using Verilog-usage of primitives,

modules and instancing and understanding the hierarchical design.

a) Constructing a 4-input AND gate using CMOS 2-input NAND and NOR

gates.

b) Constructing a decoder using CMOS 2-input AND gates and NOT gates etc.

4. RTL Modeling of general VLSI system components.

a) MUXes b) Decoders c) Priority encodes d) Flip-flops e) Registers.

5. Synthesis of Digital Circuits

a) Ripple carry adder and carry look-ahead adder

b) array multiplier

6. Verilog code for finite state machine

7. Modeling of MOSFET

8. Stick diagram representations. Simple layout of Inverter. Understanding the

concepts of Design Rule checking.

9. Fault Modeling for Stuck-at-O and Stuck-at-I faults.

10. Clock generation circuits (study)

INFORMATION TECHNOLOGY DEPARTMENT 96

VLSI DESIGN LAB MANUAL

ANNEXURE -II

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY

LABORATORY COURSE EVALUATION SYSTEM

PROGRAMMING LABORATORY COURSES

i. The number of experiments/programs/sessions in each laboratory course shall

be as per the curriculum in the scheme of instructions provided by OU.

ii. The students will maintain a separate note book for each laboratory course in

which all the related work would be done.

iii. In each session the students will complete the assigned tasks of process

development, coding, compiling, debugging, linking and executing the

programs.

iv. The students will then execute the programme and validate it by obtaining the

correct output for the provided input. The course coordinator will certify the

validation in the same session.

v. The students will submit the record in the next class. The evaluation will be

continuous and not cycle-wise or at semester end.

vi. The internal marks of 25 are awarded in the following manner:

a. Laboratory record - Maximum Marks 15

b. Test and Viva Voce - Maximum Marks 10

vii. Laboratory Record: Each experimental record is evaluated for a score of 50.

The rubric parameters are as follows:

a. Write up format - Maximum Score 20
b. Process development and coding - Maximum Score 10

c. Compile, debug, link and execute program - Maximum Score 15

d. Process validation through input-output - Maximum Score 5

While (a) is assessed at the time of record submission, (b), (c) and (d) are

assessed during the session based on the performance of the student in the

laboratory session. Hence if a student is absent for any laboratory session but

completes the program in another session and subsequently submits the record,

it shall be evaluated for a score of 20 and not 50.

INFORMATION TECHNOLOGY DEPARTMENT 97

VLSI DESIGN LAB MANUAL

viii. The experiment evaluation rubric is therefore as follows :

Parameter Max Score Outstanding Accomplished Developing Beginner Points

Process
Development

and Coding

10

Compilation,

Debugging,

Linking and
Executing

15

Process

Validation 5

Write up format 20

ix. The first page of the record will contain the following title sheet:

INFORMATION TECHNOLOGY DEPARTMENT 98

VLSI DESIGN LAB MANUAL

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGHY

LABORATORY EXPERIMENT ASSESSMENT SHEET

INFORMATION TECHNOLOGY DEPARTMENT

B.E. IV/IV I SEM

VLSI DESIGN LABORATORY (BIT 431)

NAME: ROLL NO.

Exp.
No.

Title of the Program

Date

conducted

Date

Submitted

Process

Development

and Coding

(Max 10)

Compilation
, Debugging,

Linking and

Executing
(Max 15)

Process
Validation

(Max 5)

Write up
format

(Max 20)

Total
Score

(Max 50)

1

2

3

4

5

6

7

8

9

10

11

12

TOTAL

Date: Signature of Course

Coordinator

INFORMATION TECHNOLOGY DEPARTMENT 99

VLSI DESIGN LAB MANUAL

x. The 15 marks of laboratory record will be scaled down from the TOTAL of the

assessment sheet.

xi. The test and viva voce will be scored for 10 marks as follows:

Internal Test - 6 marks

Viva Voce / Quiz - 4 marks

xii. Each laboratory course shall have 5 course outcomes.

The proposed course outcomes would be as follows:

On successful completion of the course, the student will acquire the ability to:

1. Apply the design concepts for development of a process and interpret data

2. Demonstrate knowledge of programming environment, compiling, debugging,

linking and executing variety of programs.

3. Demonstrate documentation and presentation of the algorithms / flowcharts /

programs in a record form.

4. Validate the process using known input-output parameters.

5. Employ analytical and logical skills to solve real world problem and

demonstrate oral communication skills.

xiii. The Course coordinators would prepare the assessment matrix in accordance

with the guidelines provided above for the five course outcomes. The scores to

be entered against each of the course outcome would be the sum of the

following as obtained from the assessment sheet in the record:

a. Course Outcome 1: Sum of the scores under ‗Process Development and

Coding‘.

b. Course Outcome 2: Sum of the scores under

‗Compilation/Debugging/Linking and Executing‘.

c. Course Outcome 3: Sum of the scores under ‗Write up format‘.

d. Course Outcome 4: Sum of the scores under ‗Process validation‘.

e. Course Outcome 5: Marks for ‗Internal Test and Viva voce‘.

xiv. Soft copy of the assessment matrix would be provided to the course

coordinators.

INFORMATION TECHNOLOGY DEPARTMENT 100

VLSI DESIGN LAB MANUAL

LABORATORY EXPERIMENT EVALUATION RUBRIC

CATEGORY
OUTSTANDING

(Up to 100%)

ACCOMPLISHED

(Up to 75%)

DEVELOPING

(Up to 50%)

BEGINNER (Up to

25%)

Write up

format

Aim, Apparatus,

material requirement,

theoretical basis,

procedure of

experiment, sketch of

the experimental

setup etc. is

demarcated and

presented in clearly

labeled and neatly
organized sections.

The write up follows

the specified format

but a couple of the

specified parameters

are missing.

The report follows

the specified format

but a few of the

formats are missing

and the experimental

sketch is not

included in the

report

The write up does not

follow the specified

format and the

presentation is shabby.

Observations

and

Calculations

The experimental

observations and

calculations are

recorded in neatly

prepared table with

correct units and

significant figures.

One sample

calculation is

explained by

substitution of values

The experimental

observations and

calculations are

recorded in neatly

prepared table with

correct units and

significant figures

but sample

calculation is not

shown

The experimental

observations and

calculations are

recorded neatly but

correct units and

significant figures

are not used. Sample

calculation is also

not shown

The experimental

observations and results

are recorded carelessly.

Correct units significant

figures are not followed

and sample calculations

not shown

Results and

Graphs

Results obtained are

correct within

reasonable limits.

Graphs are drawn

neatly with labeling

of the axes. Relevant

calculations are

performed from the

graphs. Equations are

obtained by

regression analysis or

curve fitting if

relevant

Results obtained are

correct within

reasonable limits.

Graphs are drawn

neatly with labeling

of the axes. Relevant

calculations from the

graphs are

incomplete and

equations are not

obtained by

regression analysis or

curve fitting

Results obtained are

correct within

reasonable limits.

Graphs are not

drawn neatly and or

labeling is not

proper. No

calculations are

done from the

graphs and

equations are not

obtained by

regression analysis

or curve fitting

Results obtained are not

correct within reasonable

limits. Graphs are not

drawn neatly and or

labeling is not proper. No

calculations are done from

the graphs and equations

are not obtained by

regression analysis or

curve fitting

Discussion of

results

All relevant points of

the result are

discussed and

justified in light of

theoretical

expectations.

Reasons for divergent

results are identified

and corrective
measures discussed.

Results are discussed

but no theoretical

reference is

mentioned. Divergent

results are identified

but no satisfactory

reasoning is given for

the same.

Discussion of results

is incomplete and

divergent results are

not identified.

Neither relevant points of

the results are discussed

nor divergent results

identified

	VLSI DESIN LAB
	Introduction TO VLSI DESIGN Laboratory
	Verilog Theory:
	Design Styles:
	Bottom-Up Design:
	History of Verilog:
	Simulation:
	Synthesis:
	Place and Route:
	Module:
	Operators:
	Control Statements:
	Tasks and Functions:
	Module Instantiation
	Gate level primitives:
	Delays:
	User Defined Primitives (UDP):
	UDP port rules:
	Abstraction Levels:
	Procedural Blocks:
	Procedural Assignment Statements:
	Procedural Group Statements:
	fork - join
	Blocking and Nonblocking Assignment Statements:
	assign and deassign:
	force and release:
	Casex and casez:
	Looping statements:

	1. SWITCH LEVEL MODELLING
	1.1 OBTAIN LOGIC GATE DESIGN OF NOT, NAND, NOR IN CMOS
	LOGIC SYMBOL
	OUTPUT

	Program 2
	OBTAIN LOGIC GATE DESIGN OF NAND IN CMOS
	LOGIC SYMBOL
	OUTPUT:

	Program 3
	OBTAIN LOGIC GATE DESIGN OF NOR IN CMOS
	LOGIC SYMBOL
	OUTPUT:

	Program 4
	12.1 F=[ab+ac+bd]’ AOI
	LOGIC SYMBOL
	OUTPUT:

	Program 5
	AIM:-
	LOGIC SYMBOL
	OUTPUT:

	Program 6
	Aim:-
	LOGIC SYMBOL
	Aim:- (1)
	LOGIC SYMBOL (1)
	OUTPUT:
	Aim:- (2)
	LOGIC SYMBOL (2)
	Aim:- (3)
	LOGIC SYMBOL (3)
	OUTPUT: (1)

	Program 10
	Aim:-
	LOGIC SYMBOL
	Aim:- (1)
	LOGIC SYMBOL (1)

	Program 12
	2.1 OBTAIN FUNCTION F=[a+b+ac+bd]’ using gate level modeling
	LOGIC SYMBOL
	2.1 OBTAIN FUNCTION F=[a+b+ac+bd]’ using gate level modeling with delay
	OUTPUT:
	Aim:-
	LOGIC SYMBOL (1)
	OUTPUT: (1)
	2.2 DESIGN HALF ADDER with delay
	OUTPUT: (2)
	Aim:- (1)
	LOGIC SYMBOL (2)
	OUTPUT: (3)
	2.3 DESIGN FULL ADDER WITH DELAY
	OUTPUT: (4)
	Aim:- (2)
	LOGIC SYMBOL (3)
	OUTPUT: (5)

	2.4 IMPLEMENT 2:1 MUX USING TRI STATE BUFFERS WITH DELAY
	VERILOG CODE
	OUTPUT:

	Program 16
	Aim:-
	LOGIC SYMBOL

	2.5 IMPLEMENT 4:1 MUX USING 2:1 MULTIPLEXERS WITH DELAY
	VERILOG CODE

	Program 17
	Aim:-
	TRUTH TABLE

	2.6 IMPLEMENT SR LATCH WITH DELAY
	VERILOG CODE

	Program 18
	Aim:-
	TRUTH TABLE
	OUTPUT:

	2.7 IMPLEMENT D – LATCH WITH DELAY
	VERILOG CODE

	Program 19
	3.1 CONSTRUCT A 4 INPUT AND-GATE USING 2-INPUT NAND & NOR GATES
	Description:
	TRUTH TABLE

	Program 20
	3.2 CONSTRUCT AN 2:4 ACTIVE HIGH DECODER USING CMOS 2-INPUT NOR & NOT GATES
	Description:
	LOGIC SYMBOL

	Program 21
	3.2 CONSTRUCT SR LATCH USING HIERARCHICAL MODELING
	Description:
	LOGIC SYMBOL

	Program 22
	3.2 CONSTRUCT D LATCH USING HIERARCHICAL MODELING
	Description:
	TRUTH TABLE
	3. REGISTER TRANSFER LEVEL (RTL) MODELING REGISTER TRANSFER LEVEL (RTL) MODELING
	BEHAVIORALMODELING
	initial Construct
	always Construct

	Program 23
	LOGIC SYMBOL
	BEHAVIOURAL CODE

	Program 24
	4.2 Write Verilog code to implement 2:4 Active High Decoder using RTL and Behavioral modeling
	Software Requirements:
	LOGIC SYMBOL
	Behavioral code

	Program 25
	4.3 Write Verilog code to implement 4-BIT Priority encoder using RTL and Behavioral modeling
	LOGIC SYMBOL
	BEHAVIORAL MODELING

	Program 26
	4.4 Write Verilog code to implement JK Flip Flop for negative edge triggered using RTL and Behavioral modeling
	LOGIC SYMBOL

	Program 27
	LOGIC SYMBOL

	Program 28
	4.6 Write Verilog code to implement T FILP FLOP using RTL modeling
	LOGIC SYMBOL

	Program 29
	4.7 Write Verilog code to implement 4 BIT LOADABLE SISO/PIPO shift register using RTL modeling
	LOGIC DIAGRAM
	NOTE: For PIPO output is same as input.

	Program 30
	4.9 Implement Ripple Carry Adder using RTL and Behavioral Modeling

	RTL CODE:
	Behavioural modelling

	Program 31
	4.8 Write Verilog code to implement 4 bit carry look ahead (CLA) using RTL and Behavioral modeling
	LOGIC SYMBOL

	Program 32
	4.10 Write Verilog code to implement 4X4 Register Based Multiplier using RTL and Behavioral modeling
	BEHAVIOURAL CODE
	Array Multiplier
	LOGIC SYMBOL
	RTL CODE
	Behavioural Code
	LAYOUT DESIGNING [DSCH2 & MICROWIND2]
	PROCEDURE:
	Inverter(NOT)

	ANNEXURE -II
	MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY LABORATORY COURSE EVALUATION SYSTEM
	The rubric parameters are as follows:
	MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGHY LABORATORY EXPERIMENT ASSESSMENT SHEET
	The proposed course outcomes would be as follows:
	LABORATORY EXPERIMENT EVALUATION RUBRIC

