

DEPARTMENT OF INFORMATION TECHNOLOGY

Data Structures Lab Manual – BE II/IV – I Sem

DEPT OF INFORMATION TECHNOLOGY

S. No CONTENTS PAGE No.

1. Introduction to Data Structures Laboratory I

Programs

2.
Program 1: Overview of C++, and programs to demonstrate C++ classes and

templates
1

3. Program 2: Implementation of Array ADT and String ADT 5

4. Program 3: Programs for Stack, Queues and Circular Queues using Arrays 8

5.
Program 4: Program to convert an Infix Expression into Postfix and Postfix

Evaluation
13

6. Program 5: Program to implement a Singly Linked List 15

7. Program 6:Programs to implement Stack & Queues using Linked Representation 19

8. Program 7: Programs implement Double Linked List and Circular Linked List 21

9. Program 8: Program for Polynomial Arithmetic using Linked List 23

10. Program 9: Program to implement Hashing 25

11.
Program 10: Programs to implement Insertion Sort, Selection Sort, Heap Sort, and Shell

Sort
27

12. Program 11: Program to implement Quick Sort and Merge Sort 30

13. Program 12: Programs to implement Tree Traversals on Binary Trees and

Graphs Search Methods
34

14. Program 13: Programs to implement operations on AVL Trees and Splay

Trees
41

15. Annexure – I : Data Structures Laboratory - OU Syllabus 49

Data Structures Lab Manual – BE II/IV – I Sem

III DEPT OF INFORMATION TECHNOLOGY

1. Introduction to Data Structures

A Data Structure is a particular way of storing and organizing data in a computer so that it can

be stored, retrieved, or updated efficiently.

Data structures are generally based on the ability of a computer to fetch and store data at

any place in its memory, specified by an address — a bit string that can be itself stored in

memory and manipulated by the program.

Relationship between Data Structures and Algorithms: The term data structure is used to

describe the way data is stored, and the term algorithm is used to describe the way data is

processed. Data structures and algorithms are interrelated. Choosing a data structure affects the

kind of algorithm you might use, and choosing an algorithm affects the data structures we use.

Data structure is a representation of logical relationship existing between individual elements of

data. In other words, a data structure defines a way of organizing all data items that considers not

only the elements stored but also their relationship to each other. The term data structure is used

to describe the way data is stored.

A data structure is said to be linear if its elements form a sequence or a linear list. The linear

data structures like an array, stacks, queues and linked lists organize data in linear order. A data

structure is said to be non linear if its elements form a hierarchical classification where, data

items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures represent

hierarchical relationship between individual data elements. Graphs are nothing but trees with

certain restrictions removed.

Data structures are divided into two types:

• Primitive data structures.

• Non-primitive data structures.

Primitive types

 Boolean

 Character

 Integer

 Double

Float

Composite types

 Structures

 Unions

 Tagged union

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Physical_address
http://en.wikipedia.org/wiki/Primitive_type
http://en.wikipedia.org/wiki/Boolean_datatype
http://en.wikipedia.org/wiki/Character_%28computer_science%29
http://en.wikipedia.org/wiki/Integer_%28computer_science%29
http://en.wikipedia.org/wiki/Double_precision
http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/IEEE_754
http://en.wikipedia.org/wiki/Composite_type
http://en.wikipedia.org/wiki/Record_%28computer_science%29
http://en.wikipedia.org/wiki/Union_%28computer_science%29
http://en.wikipedia.org/wiki/Tagged_union

Data Structures Lab Manual – BE II/IV – I Sem

IV DEPT OF INFORMATION TECHNOLOGY

Abstract data types

 Container

 Deque

 List

 Priority queue

 Queue

 Set

 Stack

 String

 Tree

Linear data structures

Arrays

 Array

 Dynamic array

 Sparse array

 Matrix

 Sparse matrix

Lists

 Linked list

 Doubly linked list

 Circularly Linked List

 Circular Doubly Linked List

 Skip list

Non Linear Data Structures

Binary trees

 Binary tree

 Binary search tree

 Self-balancing binary search tree

 Randomized binary search tree

 Weight-balanced tree

 Threaded binary tree

 AVL tree

 Red-black tree

 Splay tree

B-trees

 B-tree

 B+ tree

 2-3 tree

 2-3-4 tree

Graphs

 Undirected Graphs

 Directed Graphs

 Weighted Graphs

 Connected Graphs

 Multigraphs

 Special Graphs, etc

The collections of data you work with in a program have some kind of structure or organization.

No matter how complex your data structures are they can be broken down into two fundamental

types: Contiguous or Non-Contiguous

In contiguous structures, terms of data are kept together in memory (either RAM or in a file). An

array is an example of a contiguous structure. Since each element in the array is located next to

one or two other elements. In contrast, items in a non-contiguous structure and scattered in

http://en.wikipedia.org/wiki/Container_%28data_structure%29
http://en.wikipedia.org/wiki/Deque
http://en.wikipedia.org/wiki/List_%28computing%29
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Queue_%28data_structure%29
http://en.wikipedia.org/wiki/Set_%28computer_science%29
http://en.wikipedia.org/wiki/Stack_%28data_structure%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28computer_science%29
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Dynamic_array
http://en.wikipedia.org/wiki/Sparse_array
http://en.wikipedia.org/wiki/Matrix_%28computer_science%29
http://en.wikipedia.org/wiki/Sparse_matrix
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Doubly_linked_list
http://en.wikipedia.org/wiki/Skip_list
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
http://en.wikipedia.org/wiki/Randomized_binary_search_tree
http://en.wikipedia.org/wiki/Weight-balanced_tree
http://en.wikipedia.org/wiki/Threaded_binary_tree
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red-black_tree
http://en.wikipedia.org/wiki/Splay_tree
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/B%2B_tree
http://en.wikipedia.org/wiki/2-3_tree
http://en.wikipedia.org/wiki/2-3-4_tree

Data Structures Lab Manual – BE II/IV – I Sem

V DEPT OF INFORMATION TECHNOLOGY

memory, but we link to each other in some way. A linked list is an example of a non-contiguous

data structure. Here, the nodes of the list are linked together using pointers stored in each node.

Figure 1, below illustrates the difference between contiguous and non-contiguous structures.

Figure 2, and 3 shows the examples of such data structures.

Figure: 1. Contiguous and Non-Contiguous data structures

Figure 2: Examples of Contiguous data structures

Figure 3: Examples of Non-Contiguous data structures

Data Structures Lab Manual – BE II/IV – I Sem

VI DEPT OF INFORMATION TECHNOLOGY

Linear Data Structures: The linear data structures as mentioned above are: Arrays, Lists,

Stacks, Queues, Dequeues, etc.

Stacks: A stack is a data structure in which elements are added to or deleted from a single end

called as Top of the stack. The elements last inserted is the first to be removed, therefore stack is

said to follow the Last In First Out principle, LIFO. In this context, the insert operation is more

commonly known as Push and deletes operation as Pop. Other operations on a stack are: to find

size of stack, return top most element, search for an element in the stack etc.

Stacks are used in: Function calls, Recursion, Evaluation of expressions by compilers, undo

mechanism in an editor, etc

Figure 4 illustrates the operations carried out on a stack.

Figure 4. Operations on a stack

The stack data structures can be represented using Arrays or Linked Lists. When represented

using an array, the initial value of Top, the index for top most element, when stack is empty, is -

1, a nonexistent index.

The ADT for an array based stack is given below:

Data Structures Lab Manual – BE II/IV – I Sem

VII DEPT OF INFORMATION TECHNOLOGY

ADT Stack

{

Private:

Public:

}

An array;

Top Index, capacity;

Stack(capacity);

Int Push(item);

Void Pop(&item);

When elements are pushed into stack, the Top gradually increases towards right. Each pop

operation causes the Top index to decrease by one. Figure 5 illustrates the array representation.

Figure 5: Array Representation of Stack

Stacks can also be represented using linked representation, wherein the elements of the stack are

not stored contiguously using an array, rather the elements are stored using a node structure that

can be stored in the memory non-contiguously. Each node contains information about the data

element and the address of where the next element is stored in the memory.

Data Structures Lab Manual – BE II/IV – I Sem

IX DEPT OF INFORMATION TECHNOLOGY

Figure 6: Linked Stack

The ADT for a linked stack is:

ADT Node

{

Private:

T data; //template type data

Node<T> *link;

};

ADT LinkedStack

{

Private:

Node<T> *Top;

Int size;

Public:

}

Push(T item); Pop(); bool isEmpty();

QUEUES: A queue is a linear data structure in which elements can be inserted and deleted

from two different ends. The end at which elements are inserted into queue is referred to as Rear

and the end from which elements are deleted is known as Front. The element first inserted will

be the first to delete, therefore queue is said to follow, First In First Out, FIFO principle. Queues

Data Structures Lab Manual – BE II/IV – I Sem

X DEPT OF INFORMATION TECHNOLOGY

are used: in processor scheduling, request processing systems, etc. A queue can be implemented

using arrays or linked representation.

ADT Queue

{

Private:

T queue[];

Int front, rear;

Int size;

Int capacity;

Public:

};

Void Push(T item);

Void Pop(T &item);

Bool IsEmpty();

T getFront();

T GetRear();

A queue can be implemented using arrays with different constraints on the front and rear

pointers.

Front fixed and Rear Variable: in this representation, rear pointer is variable, whereas front

pointer is fixed, which means that front always point to the array index 0. Hence each deletion on

a queue causes the elements from index 1 to rear to move one position down, backward

movement of data.

Front and Rear Variable: in this representation, front is made variable, and every deletion on a

queue causes the front pointer to migrate or advance to next location. At one particular point, the

front may be greater than 0, rear is at capacity, does it mean that queue is full? Whenever front is

non zero and rear reaches capacity, the queue is not full but it can accommodate elements at

starting indices of array from 0 to front-1. But to use these locations, we need to either shift

elements from front to rear to positions starting from 0, which results in increased time

complexity of delete operation. To overcome this wastage of space and increase in time

complexity, we imagine the queue to be circular, such that two ends of the queue meet each

other.

Data Structures Lab Manual – BE II/IV – I Sem

XI DEPT OF INFORMATION TECHNOLOGY

Figure 7: Insert and delete operations on a queue when Front (Head) is variable.

The circular representation of queue requires that the front pointer points one position counter

clockwise from the first element inserted in the queue, therefore, if a queue is store in an array of

size n, then only n-1 elements can be stored in such a queue. The front is made to point so

because it will be difficult to distinguish between queue empty and queue full conditions. Below

figure depicts a circular queue.

Data Structures Lab Manual – BE II/IV – I Sem

XII DEPT OF INFORMATION TECHNOLOGY

Figure 8: Circular Queue.

Linked Queues: Linked representation of queue is depicted in the below diagram. The node

Front points to first element inserted in the queue and node Rear Points to last element inserted

in the queue. To insert an element into a linked queue, simply create a new node and let Rear

pointer update its link field to address of newly inserted node, and let the newly inserted node be

renamed as Rear. To delete an element from a Linked Queue, the Front pointer is advanced to

point to the next element.

Figure 9: Linked representation of a Queue.

Data Structures Lab Manual – BE II/IV – I Sem

XIII DEPT OF INFORMATION TECHNOLOGY

Linked Lists:

A linked list is a collection of nodes which contain data elements as well as the information

about where the next element in the list is stored. Each element is stored using a node format,

which contains two fields: data and link. Data field contains the information and Link filed

contains a pointer to the address of next element in the list.

Figure: Linked List Node Structure

Operations on Linked Lists:

Insert: Insert at first position, insert at last position, insert into ordered list

Delete: Delete an element from first, last or any intermediate position

Traverse List: print the list

Copy the linked List, Reverse the linked list, search for an element in the list, etc

Types of Linked Lists:

Singly Linked List:

 It is a basic type of linked list.

 Each node contains data and pointer to next node and last node’s pointer is NULL.

 Limitation of SLL is that we can traverse the list in only one direction, forward direction.

Figure : Single Linked List

Circular Linked List:

 CLL is a SLL where last node points to first node in the list

 It does not contain null pointers like SLL

 We can traverse the list in only one direction

Data Structures Lab Manual – BE II/IV – I Sem

XIV DEPT OF INFORMATION TECHNOLOGY

 Its advantage is that when we want to go from last node to first node, it directly points to

first node

Figure: CLL

Doubly Linked List:

 Each node of doubly linked list contains data and two pointer fields, pointer to previous

and next node.

 Advantage of DLL is that we can traverse the list any direction, forward or reverse.

 Other advantages of DLL are that we can delete a node with little trouble, since we have

pointers to the previous and next nodes. A node on a SLL cannot be removed unless we

have pointer to its predecessor.

Inserting into a SLL:

Data Structures Lab Manual – BE II/IV – I Sem

XV DEPT OF INFORMATION TECHNOLOGY

Deleting from a SLL:

Data Structures Lab Manual – BE II/IV – I Sem

XVI DEPT OF INFORMATION TECHNOLOGY

Hashing: Hashing is an important concept in Computer Science. A Hash Table is a data

structure that allows you to store and retrieve data very quickly. There are three components that

are involved with performing storage and retrieval with Hash Tables:

 A hash table. This is a fixed size table that stores data of a given type.

 A hash function: This is a function that converts a piece of data into an integer.

Sometimes we call this integer a hash value. The integer should be at least as big as the

hash table. When we store a value in a hash table, we compute its hash value with the

hash function, take that value modulo the hash table size, and that's where we

store/retrieve the data.

 A collision resolution strategy: There are times when two pieces of data have hash

values that, when taken modulo the hash table size, yield the same value. That is called

a collision. You need to handle collisions. We will detail four collision resolution

strategies: Separate chaining, linear probing, quadratic probing, and double hashing.

An example helps to illustrate the basic concept. Let's suppose that our hash table is of size 10,

and that we are hashing strings. We'll talk about hash functions later, but let's suppose that we

have four strings that we want to store in our hash table: "Luther," "Rosalita", "Binky" and

"Dontonio." Let's also suppose that we have a hash function that converts these strings into the

following values:

 "Luther" has a hash value of 3249384281.

 "Rosalita" has a hash value of 2627953124.

 "Binky" has a hash value of 216319842.

 "Dontonio" has a hash value of 2797174031.

So, we start with an empty hash table, and let's store "Luther". "Luther"'s hash value modulo 10

is 1, so "Luther" goes into index 1 of the hash table:

Data Structures Lab Manual – BE II/IV – I Sem

XVII DEPT OF INFORMATION TECHNOLOGY

Similarly, "Rosalita" goes into index 4, and "Binky" into index 2. If we insert them into the hash

table, the table looks as follows:

To find a string in the hash table, we calculate its hash value modulo ten, and we look at that

index in the hash table. For example, if we want to see if "Luther" is in the hash table, we look in

index 1.

Now, suppose we want to look for "Dontonio" in the hash table. Since its hash value is

2797174031, we look in index 1. It's not there. Now suppose we wanted to insert "Dontonio."

Well, that's a problem, because "Luther" is already at index one. That is a collision.

Properties of hash tables and hash functions: First, we define the load factor of a hash table

to be:

The selection of a hash function is very important. Important properties of Hash Functions are as

follows:

 It should be quick to compute, often constant time, or linear in the size of the data that

you are hashing.

 The hash values that it computes should be uniformly distributed from zero to one minus

the hash table size. That minimizes collisions.

 A hash function is a function.

o That is, if k1 = k2, then h(k1) = h(k2).

 A good hash function is one that

o produces unpredictable hash indices (is random).

o produces widely and evenly separated hash indices (is uniform).

o is fast to compute (is efficient).

Data Structures Lab Manual – BE II/IV – I Sem

XVIII DEPT OF INFORMATION TECHNOLOGY

If the keys are integers and the hash table is an array of size 127, then the function Hash (Key)

defined by Hash(Key) = key % 127 maps numbers to their modulus in the finite field of size 127.

Collision Resolution: what to do when two keys are hashed to the same location in the hash

table. There are different ways of handling situations in which two keys map to the same location

(called collision):

 open addressing (also known as closed hashing) - finds an alternative location for the

(key, value) pair, if the first location is occupied. (Linear Probing, Quadratic Probing)

 Closed addressing (also known as open hashing) - allows multiple (key, value) pairs to be

stored in a single array location. (Separate Chaining)

Trees: A tree is a structure in which each node can have multiple successors (unlike the linear

structures that we have been studying so far, in which each node always had at most one

successor). The first node in a tree s called a root, it is often called the top level node (YES, in

computer science root of a tree is at the top of a tree). In a tree, there is always a unique path

from the root of a tree to every other node in a tree – this has an important consequence: there are

no cycles in a tree (think of a cycle as a closed path that allows us to go in a cycle infinitely

many times).

The nodes at the end of each path that leads from root downwards are called leaves. The other

way to think about it is that leaves are the nodes that point to null. In a linear structure there was

only one such node indicating the end of the list. In trees we have many such nodes.

Given a node in a tree, its successors (nodes connected to it in a level below) are called its

children.

Descendants of a node are its children, and the children of its children, and the children of the

children of its children.

Given a node in a tree, its predecessor (node that connects to it in a level above - there is only

one such node) is called its parent.

Ancestors of a node are its parent, and the parent of the parent, and ... - all the nodes along the

path from itself to the root

Data Structures Lab Manual – BE II/IV – I Sem

XIX DEPT OF INFORMATION TECHNOLOGY

Figure 10: An example of a Tree with 15 nodes

Figure 11: This is not a Tree, as it has multiple paths between a pair of nodes.

Binary Trees: A binary tree is a special kind of tree in which each node can have at most two

children: they are distinguished as a left child and a right child. The subtree rooted at the left

child of a node is called its left subtree and the subtree rooted at the right child of a node is called

its right subtree.

Data Structures Lab Manual – BE II/IV – I Sem

XX DEPT OF INFORMATION TECHNOLOGY

Level of a node refers to the distance of a node from the root. The level of the root is 1. Children

of the root are at level 2, ‖grandchildren‖ or children of the children of the root are at level 3, etc.

The height of a tree is the largest level of any node in the tree. In this case the term depth is used

to indicate the largest level.

Maximum number of nodes on a level i of a binary tree is 2i-1. Also the maximum number of

nodes in a binary tree of depth k is 2k – 1, k>0.

Figure 12: a Binary Tree

Binary Search Tree: A binary search tree is a binary tree which may be empty. If not empty,

it satisfies the following properties:

1. Every element has a key and no two elements have the same key .

2. The keys (if any) in the left subtree are smaller than the key in the root

3. The keys (if any) in the right subtree are greater than the key in the root

4. The left and right subtrees are binary search trees.

Figure 13: Binary Search Tree on Numbers Figure 14: Binary Search Tree on Strings

Data Structures Lab Manual – BE II/IV – I Sem

XXI DEPT OF INFORMATION TECHNOLOGY

Searching a Binary Search Tree: Suppose we wish to search for an element with key x. We

being at root. If the root is 0, then the search tree contains no elements and the search terminates

unsuccessfully. Otherwise, we compare x with key in root. If x equals key in root, then search

terminates successfully. If x is less than key in root, then no element in right sub tree can have

key value x, and only left subtree is to be searched. If x is larger than key in root, the no element

in left subtree can have the key x, and only right subtree is to be searched. The subtrees can be

searched recursively.

Insertion into a Binary Search Tree: To insert an element x, we must first verify that its key is

different from those of existing elements. To do this, a search is carried out. If search is

unsuccessful, then element is inserted at point where the search terminated.

Deleting from a Binary Search Tree: Deletion from a leaf element is achieved by simply

removing the leaf node and making its parent’s child field to be null. Other cases are deleting a

node with one subtree and two subtrees.

Figure 15: Deleting a leaf node Figure 16: Deleting a non leaf node.

Data Structures Lab Manual – BE II/IV – I Sem

XXII DEPT OF INFORMATION TECHNOLOGY

AVL Trees: Consider a Binary Search Tree for months of an year:

Figure 16: BST when months are inserted in chronological order

Figure 17: BST when inserted in order: JULY, FEB, MAY, AUG, DEC, MAR, OCT, APR,

JAN, JUNE, SEPT, NOV

Figure 18: A degenerate BST.

Data Structures Lab Manual – BE II/IV – I Sem

XXIII DEPT OF INFORMATION TECHNOLOGY

From the above three examples, we know that the average and maximum search time will be

minimized if the binary search tree is maintained as a complete binary search tree at all times.

However, to achieve this in a dynamic situation, we have to pay a high price to restructure the

tree to be a complete binary tree all the time.

In 1962, Adelson-Velskii and Landis introduced a binary tree structure that is balanced with

respect to the heights of subtrees. As a result of the balanced nature of this type of tree, dynamic

retrievals can be performed in O(log n) time if the tree has n nodes. The resulting tree remains

height-balanced. This is called an AVL tree.

AVL Tree: An empty tree is height-balanced. If T is a nonempty binary tree with TL and TR

as its left and right subtrees respectively, then T is height-balanced iff

(1) TL and TR are height-balanced, and

(2) |hL – hR| ≤ 1 where hL and hR are the heights of TL and TR, respectively.

(3) The Balance factor, BF(T) , of a node T is a binary tree is defined to be hL – hR, where

hL and hR, respectively, are the heights of left and right subtrees of T. For any node T in an

AVL tree, BF(T) = -1, 0, or 1.

Figure 18: An AVL Tree Figure 19: An AVL Tree

Following an insertion, an AVL Tree may no longer be an AVL Tree. To restore the balance

factors of the nodes in AVL Tree, any one of the four types of rotations carried out: LL Rotation,

RR Rotation, LR Rotation, and RL rotation.

Data Structures Lab Manual – BE II/IV – I Sem

XXIV DEPT OF INFORMATION TECHNOLOGY

Graphs:

Let V be a finite set, and denote by E(V) = {{u, v} | u, v ∈ V, u ≠v}

DEFINITION. A pair G = (V, E) with E ⊆ E(V) is called a graph (on V). The elements

of V are the vertices of G, and those of E the edges of G. The vertex set of a graph G

is denoted by VG and its edge set by EG. Therefore G = (VG, EG).

In literature, graphs are also called simple graphs; vertices are called nodes or points; edges are

called lines or links.

A graph G can be represented as a plane figure by drawing a line (or a curve) between the points

u and v (representing vertices) if e = uv is an edge of G. The figure on the right is a geometric

representation of the graph G with VG = {v1, v2, v3, v4, v5, v6} and EG = {v1v2, v1v3, v2v3,

v2v4, v5v6}.

Graph Representations:

Let VG = {v1, . . . , vn} be ordered. The adjacency matrix of G is the n × n-matrix M with

entries Mij = 1 or Mij = 0 according to whether vivj ∈ G or vivj /∈ G. For instance, the above

graph has an adjacency matrix given below. Notice that the adjacency matrix is always

symmetric (with respect to its diagonal consisting of zeros).

Data Structures Lab Manual – BE II/IV – I Sem

XXV DEPT OF INFORMATION TECHNOLOGY

Sorting:

Insertion Sort: Insertion sort iterates, consuming one input element each repetition, and growing

a sorted output list. An iteration of insertion sort removes one element from the input data, finds

the location it belongs within the sorted list, and inserts it there. It repeats until no input elements

remain.

Sorting is typically done in-place, by iterating up the array, growing the sorted list behind it. At

each array-position, it checks the value there against the largest value in the sorted list (which

happens to be next to it, in the previous array-position checked). If larger, it leaves the element in

place and moves to the next. If smaller, it finds the correct position within the sorted list, shifts

all the larger values up to make a space, and inserts into that correct position.

The resulting array after k iterations has the property where the first k + 1 entries are sorted ("+1"

because the first entry is skipped). In each of the iterations, the first remaining entry of the input

is removed, and inserted into the result at the correct position, thus extending the result.

3 7 4 9 5 2 6 1

3 7 4 9 5 2 6 1

3 7 4 9 5 2 6 1

3 4 7 9 5 2 6 1

3 4 7 9 5 2 6 1

3 4 5 7 9 2 6 1

2 3 4 5 7 9 6 1

2 3 4 5 6 7 9 1

1 2 3 4 5 6 7 9

https://en.wikipedia.org/wiki/Iteration

Data Structures Lab Manual – BE II/IV – I Sem

XXVI DEPT OF INFORMATION TECHNOLOGY

Quick Sort: The basic idea of Quick sort is to repeatedly divide the array into smaller pieces

(these are called partitions), and to recursively sort those partitions. Quick sort divides the

current partition by choosing an element - the pivot - finding which of the other elements are

smaller or larger, sorting them into two different sub-partitions (one for the values smaller than

the pivot, one for those larger than the pivot).

(66, 77, 11, 88, 22, 33, 44, 55)

R1 R2 R3 R4 R5 R6 R7 R8 Left Right

[66 77 11 88 22 33 44 55] 1 8

[33 55 11 44 22] 66 [88 77] 1 5

[11 22] 33 [44 55] 66 [88 77] 1 2

[11 22] 33 [44 55] 66 [88 77] 4 5

[11 22] 33 [44 55] 66 [88 77] 7 8

[11 22] 33 [44 55] 66 [77 88] 8 8

Data Structures Lab Manual – BE II/IV – I Sem

XXVII DEPT OF INFORMATION TECHNOLOGY

Merge Sort: Merge Sort is a sorting algorithm which produces a sorted sequence by sorting its

two halves and merging them. Merge Sort algorithm (Like Quick Sort) is based on a divide and

conquers strategy. First the sequence to be sorted is decomposed into two halves (Divide). Each

half is sorted independently (Conquer). Then the two sorted halves are merged to a sorted

sequence (Combine)

Figure: Working of Merge Sort

Data Structures Lab Manual – BE II/IV – I Sem

1 DEPT OF INFORMATION TECHNOLOGY

Program 1: Overview of C++ and Programs to demonstrate C++ classes and

Templates

Program Objective: To briefly summarize the concepts of C++ necessary in Data Structures

Laboratory such as: Classes, Member Functions, Inheritance, Friend Functions, Templates,

Exception handling, Instantiation, etc.

Program Description: In order to give a quick review of aforementioned topics in C++,

following programs are demonstrated in the lab.

 Rectangle Class (class Declaration, Member function definition, Invocation)

 Linear Search (template based)

 Binary Search (Template based)

 Max and Min of an Array (Template Based)

Rectangle Class Pseudo Code:

 Declare a class Rect, with data members: len, breadth, area, and perimeter.

 Declare member functions to accept input and compute area and perimeters: Rect(l,b),

ComputeArea(), ComputePeri(), Display()

 Write a main function:

o instantiate the class by passing appropriate arguments to the constructor

o invoke ComputeArear(), ComputePeri() and Display() functions

Validation: Sample Output: Enter the Length and Breadth of rectangle: 2 4

Area of Rectangle is : 8

Perimeter of Rectangle: 12

Linear Search Pseudo code: Given a list of n elements and a key, objective is to search for the

existence of the key in the list, if found return the index of key in list, else return -1 indicating

non-existence of key in list.

 Declare a class LinearSearch, with data members: T List[20], T Key, int size;

 Declare member functions: LinearSearch(int n), void Search()

Data Structures Lab Manual – BE II/IV – I Sem

2 DEPT OF INFORMATION TECHNOLOGY

Void LinearSearch(int n)

{

Cout<<‖\nEnter ―<<n<<‖ elements in the array\n‖;

For(int i=0;i<n;i++)

Cin>>list[i];

Cout<<‖\nEnter the key to be searched\n‖;

Cin>>key;

}

Void Search()

{

Int flag=0,i;

For(i=0;i<n;i++;)

{

If(list[i]==key)

{

Flag=1; break;

}

}

If(flag==1) cout<<‖\nElement found at ―<<i<<‖\n‖;

Else cout<<‖\nElement not found\n‖;

}

Validation:

Enter 1- for int

2- for float

3- for char

1

Enter no of array elements

5

Enter array elements

8 22 5 13 45

Enter element to be searched

13

Element Found at 4 position

Binary Search Pseudo Code: Given an array of elements, and a key, objective is to search

the key in array and the list must be a sorted sequence of elements. Binary search searches

for a key by dividing the array into two sub arrays at the index (low+high)/2, and compares

the key value with element at computed index, if matched, returns, else if the key is smaller

than that element, then binary search is carried out in sub array (0:mid-1), or if key is greater

then binary search is done on sub array (mid+1:n). This process is repeated recursively until

the key is found.

Data Structures Lab Manual – BE II/IV – I Sem

3 DEPT OF INFORMATION TECHNOLOGY

Declare a class with a constructor and the member functions: sort, display, search.

Accept elements in a dynamically allocated array via constructor.

a=new T[n];

cout<<‖\n Enter array elements‖;

for(int i=0;i<n;i++)

cin>>a[i];

 Use sort function to sort elements in an array.

 Use display function to display the sorted array.

 Use search function to search the desired key element using the following logic:

int l=0,h=size-1,mid;

cout<<‖Enter element to be searched‖;

cin>>ele;

while(l<=h)

{

mid=(l+h)/2;

for(i=0;i<size;i++)

{

if(a[mid]==ele)

{

return 1;

break;

}

else if(a[mid]>ele)

h=mid-1;

else

l=mid+1;

}

}

Validation: Enter elements and key from the keyboard, and run the program for both successful

and unsuccessful search.

Data Structures Lab Manual – BE II/IV – I Sem

4 DEPT OF INFORMATION TECHNOLOGY

Program to find Max and Min of an Array:

Description: Given an array, we have to find out the maximum element and the minimum

element of the array.

Implementation logic:

 Declare a class with a constructor to accept array elements and a member function to find

the max and min number and to display them.

Accept elements in a dynamically allocated array via constructor.

a=new T[n];

cout<<‖\n Enter array elements‖;

for(int i=0;i<n;i++)

cin>>a[i];

Member function details:

 Initially assign high and low to first element in an array.

low=a[0];

high=a[0];

 Compare high and low with each array element and after each comparison assign larger value

to high and lower value to low.

for(int i=0;i<n;i++)

{

if(high<a[i])
high=a[i];

if(low>a[i])

low=a[i];

}

Validation: run the program by entering array elements of integer type and character type.

Sample output:

Enter 1-for int
2- for float

3- for char

1

Enter the size of an array

5

Enter array elements

1 45 23 78 5

The max is 78 and the min is 1

Data Structures Lab Manual – BE II/IV – I Sem

5 DEPT OF INFORMATION TECHNOLOGY

Program 2: Implementation of Array ADT and String ADT

Program Objective: Implementation of One Dimensional Array as an Abstract Data Type

Program Description: The objective is to write a program to perform various operations on an

Array of elements, such as, create an array of elements, store elements, retrieve elements using

overloading of stream insertion and extraction operators, and to know if array is empty or full,

etc.. The ADT for Array1D is as follows:

class Array1D

{

private:

int capacity;

int size;

int *array;

public:

Array1D(int Arraycap=10);

~Array1D(){ delete [] array;}

int Getsize();

bool isEmpty() const;

bool isFull() const;

void insert(int pos,int vol);

void Display(int pos,int &x);

friend istream& operator>>(istream& is, Array1D &a);

friend ostream& operator<<(ostream& os, Array1D &a);

};

 Implement the constructor to dynamically allocate memory to the array, and also

implement the Destructor to release the memory allocated to array.

 GetSize() function returns the number of elements currently stored in array

 isEmpty() checks if the array is empty and returns true if so, else false

 isFull() checks if the array is full before every insert operation on array.

 Insert(pos, val) is a function that will insert an item val at the index pos.

 Stream insertion and extraction operators are to be overloaded

Validation: Run the program with elements of type integers, characters and float .

Sample Output:

Enter the number of elements to be stored in the array ADT

5

Enter the elements: 10, 4, 5, 2, 54

Array is not Empty.

Data Structures Lab Manual – BE II/IV – I Sem

6 DEPT OF INFORMATION TECHNOLOGY

Retrieving the elements from array: 10, 4, 5, 2, 54

String ADT: Implementation of various operations on an array of characters or String.

Program Description: The objective is to perform various operations on a string of

characters: create, display, reverse, find substring, find a given pattern in a given string,

count the occurrences of characters of the string, concatenate two strings, find length of

string etc.

Pseudo Code:

 Declare a class StringADT, with data members as: *str, size

 Implement the constructor and dynamically allocate memory to str and assign passed

string to str

 Compute length of string by using logic: for(int i=0;str[i]!=’\0’;i++) len++;

 Overload the == operator to find if two passed strings are identical or not (without

using strcmp)

 Compute length of first string, l1

 Compute length of second string, l2

 Compare if l1 and l2 are same, if not, strings are not identical

 If i1==i2, then compare every character of first string corresponding

character of second string, for every match increase a flag value,

 At the end compare the flag value with either l1 orl2, if same, strings are

identical, else not.

 Implement the Concat function to concatenate two string

 Compute length of first string, l1

 Compute length of second string, l2

 Check if any of the string is empty, if so then no concatenation can happen

 Concatenation is done as follows: for(i=l1,j=0;j<l2;j++,i++) s[i]=t.s[j];

 Implement substr(int I, int j) to obtain a substring from index i to index j.

void substr(int i, int j)

{

if(i>Length() || (i+j-1)>Length())

throw "invalid range specified, retry";

char str[20];

int l=i,k;

for(k=i;k<=(i+j-1);k++)

{

str[k]=s[l];

l++;

}

str[k]='\0';

cout<<"\nThe substring is "<<str<<"\n";

}

Data Structures Lab Manual – BE II/IV – I Sem

7 DEPT OF INFORMATION TECHNOLOGY

 Implement the Find(pattern) function to know if a given pattern exists in string

int Find(String pat)

{

for(int start=0;start<=Length()-pat.Length();start++)

{

int j;

for(j=0;j<pat.Length() && s[start+j]==pat.s[j];j++)

{

if((j+1)==pat.Length()) return start;

}

}

return -1;

}

Validation: validate the above program by entering appropriate strings, indices, and patterns.

ENter the string..

narendermodi

The entered String is ...

narendermodi

ENter one more string

modi

The entered String is ...

modi

The size of string 1 is...12

The size of string 2 is...4

in == lengths are as...12 4

The entered strings are not identical

The concatenated string is...narendermodimodi

Data Structures Lab Manual – BE II/IV – I Sem

8 DEPT OF INFORMATION TECHNOLOGY

10. Program 3: Programs for Stack, Queue and Circular Queue.

Program Objective: Write programs to demonstrate the fundamental data structures: Stacks and

Queues

Description: The objective is to implement the stack data structure. Operations to be carried out

on a stack are push, pop, isEmpty, isFull, TopElement, Display(), etc.

Declare a class with a constructor and the following member functions: push, pop, display, op.

Dynamically allocate memory to the array via constructor and initialize top to -1 in it.

a=new T[n];

top=-1;

Member function details:

 push(): check if the stack is full if so display ―stack full‖ else increment top and push the

element in position pointed by the top.

if(top==n-1)// Stack full condition

cout<<‖stack is full‖;

else

{

}

++top;

a[top]=ele;

 pop(): check if the stack is empty if so display ―stack empty. No elements to pop‖ else pop

the element pointed by the top, store it in a variable of same type and decrement top to point the

top most element in the stack.

T val;

if(top==-1)

return -1;

else

{

}

val=a[top];

top--;

return val;

 Display(): Check if the stack is empty if not display the elements in the stack.

 op(): Give the following options to the user:

cout<<‖\n Enter 1-for push\n 2-for pop\n 3-for display\n 4-to exit\n‖;

cin>>ch;

Carry out the operation chosen by the user.

Data Structures Lab Manual – BE II/IV – I Sem

9 DEPT OF INFORMATION TECHNOLOGY

Validation: Execute the program and carry out multiple push, pop and display operations to

understand the working of the program

Sample Output:

Enter 1-for int

2- for float

3- for char

3
Enter the no of elements in stack 4

Enter 1- for push

2- for pop

3- for display

4- for exit

1

Enter element to push a

Enter another choice 1

Enter element to push b

Enter another choice 1

Enter element to push c

Enter another choice 2

poped value is c

Enter another choice 3

Stack contents are

b a Enter another choice 4

Queues: program to demonstrate various operations on a queue data structure

Description: The objective is to implement a queue data structure, which supports creation,

pushing of elements, pop of elements, return front and rear elements, etc. The queue data

structure is implemented using arrays.

 Declare a class with a constructor and the following member functions: push, pop,

display, and op.

Dynamically allocate memory to the array via constructor and initialize rear=-1 and

front=0 in it.

a=new T[n];

Member function details:

 Push(): check if the Queue is full if so display ―Queue full‖ else increment rear and push

the element in position pointed by the rear.

if(r=n-1)/***Queue full condition***/

cout<<‖Queue is full‖;

Data Structures Lab Manual – BE II/IV – I Sem

10 DEPT OF INFORMATION TECHNOLOGY

else

{

++r;

a[r]=ele;

}

 Pop(): check If the Queue is empty if so display ―Queue empty. No element to pop‖

Else pop the element pointed by the front, store it in a variable of same type and If rear and

front are pointing to the same position (queue empty) then set them to the positions show

below Else just increment front. Do not forget to return the element.

if(r==-1)/***Queue Empty condition***/

return -1;

else

{

T ele=a[f];
if(f==r)/***Queue Empty***/

{

}

else

f=0;r=-1;/*** Set f and r***/

++f;

return ele;

}

 Display(): Check If(―r==-1‖) the Queue is empty if not display the elements in it.

 op(): Give the following options to the user:

cout<<‖\n Enter 1-for enqueue\n 2-for dequeue\n 3-for display\n 4-to exit\n‖;

cin>>ch;

Carry out the operation chosen by the user.

Sample Output:

Enter 1-for int

2-for float

3-for char

3

Enter the size of the array: 4

Enter 1-for enqueue

2- for dequeue

3-for display

4-for exit

1

Enter element j

Enter another choice 1

Enter element a

Enter another choice 2

The front element in the queue is j

Data Structures Lab Manual – BE II/IV – I Sem

11 DEPT OF INFORMATION TECHNOLOGY

Enter another choice 3

Contents are

a

Enter another choice 4

Circular Queues:

 Declare a class with a constructor and the following member functions: Push, Pop,

display, op.

Dynamically allocate memory to the array via constructor and initialize rear and front to -1

in it.

a=new T[n];

Member function details:

 Push(): check If the Circular queue is full if so display ―Queue full‖ Else assign rear to

(rear+1)%n and push the element in position pointed by the rear.

If front is equal to -1 then set it to 0.

if((r+1)%n=f)/***Circular queue full condition***/

cout<<‖Queue is full‖;

else

{

r=(r+1)%n;

a[r]=ele;

}

if(f==-1)
f=0;

 Pop(): check If the Queue is empty if so display ―Queue empty. No element to pop‖

Else pop the element pointed by the front i.e. store it in a variable of same type and If rear

and front are pointing to the same position (queue empty) then set them to the positions show

below Else just assign (f+1)%n to front . Do not forget to return the element.

if(r==-1)/***Circular queue Empty condition***/

return -1;

else

{

T ele=a[f];
if(f==r)/***Circular queue Empty***/

f=r=-1;

else

f=(f+1)%n;

return ele;

 Display(): Check If(―r==-1||f==-1‖) the Circular queue is empty if not check

If front is less than or equal to rear if so display elements present at the indices starting from

front to rear.

If front is greater than rear then display elements that are

Data Structures Lab Manual – BE II/IV – I Sem

12 DEPT OF INFORMATION TECHNOLOGY

1. Present at the indices starting from front to n-1(n is size of the array).

2. Present at the indices starting from 0 to rear.

int i;

if(r==-1|| f==-1)

cout<<"\nQueue is empty";

else

{

cout<<"\ncontents are\n";

if(f<=r)

{

}

if(f>r)

{

}

}

for(i=f;i<=r;i++)

cout<<a[i]<<endl;

for(i=f;i<=n-1;i++)

cout<<a[i]<<endl;

for(i=0;i<=r;i++)

cout<<a[i]<<endl;

 op(): Give the following options to the user:

cout<<‖\n Enter 1-for enqueue\n 2-for dequeue\n 3-for display\n 4-to exit\n‖;

cin>>ch;

Carry out the operation chosen by the user.

Data Structures Lab Manual – BE II/IV – I Sem

13 DEPT OF INFORMATION TECHNOLOGY

Program 4: Program to convert an Infix expression into Postfix and Evaluate

Postfix Expression

Program Objective: The objective is to write a program to demonstrate the execution of

expressions by a compiler using stack data structure.

Program Description: In order to execute the arithmetic, logical, or relational expressions,

we have to convert these expressions for the efficient execution into a notation known as

Reverse Polish Notation or Postfix notation, wherein the operators come after the operands.

Data structure used to carry out this conversion and evaluation is Stack.

Pseudo Code:

Initialize stack contents to the special symbol #

 Scan the left most symbol in the given infix expression and denote as the current input

symbol

 While the current symbol is not # DO

 Remove and output all stack symbols whose precedence values are greater than or equal

to precedence of the current input symbol

 Push current input symbol on to the symbol.

 Scan the left most symbol in the infix expression and let it be the current input symbol.

 Remove an output all stack symbol until the top element becomes #.

int pre(char x)

{

if(x=='+'||x=='-')

return 1;

else if(x=='*'||x=='/')

return 2;

else if(x=='#')

return 0;

else

}

return 3;

int main()

{

try

{

Stack<char>s(30);

char inf[30],pf[30],x;

int i=0,j=0,l;

Data Structures Lab Manual – BE II/IV – I Sem

14 DEPT OF INFORMATION TECHNOLOGY

cout<<"Enter an infix expression\n";

cin>>inf;

l=strlen(inf);

inf[l]='#';

inf[l+1]='\0';

s.push('#');

while(!s.isEmpty())

{

if(pre(inf[i])>pre(s.Top()))

{

}

else

{

}

}

s.push(inf[i++]);

s.p op(x);

pf[j++]=x;

pf[j-1]='\0';

cout<<pf;

}

catch(char *e) { cout<<e<<endl; } }

Program Validation: Execute the program and provide an arithmetic expression, and obtain the

postfix notation of that expression. Sample output is as follows:

Enter an infix expression: a+b*c

The postfix notation of expression is : bc*a+

Evaluation of Postfix Expression: The objective is to evaluate a given postfix expression using

stack data structure. For example, 2+3*5 is equivalent to expression 3 5 * 2+ in postfix.

To evaluate 3 5 *2+,

 Create a stack of integers, i.e., Stack<int> s(30)

 Enter a postfix expression, i.e. 3 5 * 2 +

 Scan the postfix expression from left to right until \0 is encountered and do the

following

 If an operand is encountered, then push it onto the stack

 If an operator is encountered, then pop two topmost elements from the stack

and carryout the operator on these two operands and push the result onto stack

 Display the result.

Validation: to validate the program, enter a postfix expression from the keyboard, such as 23+

or 23*5+ etc.

Data Structures Lab Manual – BE II/IV – I Sem

15 DEPT OF INFORMATION TECHNOLOGY

Program 5: Program to implement a Linear List and Singly Linked List

Program Description: the objective is to write a program to implement the linear list using

arrays and a linked list using linked representation. The operations to be carried out on the list

are: create, insert (prepend, append, insert after), delete (first position, intermediate, last

position), merge two lists, sort, display, reverse, etc.

Linear List using Arrays: A list can be created using a one-dimensional array as follows:

 Declare a list of template type, and size of list

 Define a member function IsEmpty() to check for the empty list and a Member function

size() to find the no of elements in the list.

 get(index): This member function returns an element if present at the given index of the list

else a false value is returned.

Return list[index];

 indexof(x): This member function returns the index of the element x and returns a false value

if x is not present in the list.

For(int i=0;i<size;i++)

{

If(list[i]==x) then return i+1;

}

Return -1;

 erase(index): This member function removes or deletes the index element.

To remove or delete this element we first need to ascertain that the list contains an element with

this index and then delete the element. Then, we have to move the elements from index index-1

to n-1 one position down.

 insert(index,x): This member function inserts an element x as the index element. To insert

new element as index element we first need to move element at position index through n-1 one

position up then insert new element in position index and increment n by one.

Sample output:

Enter 1-for int

2-for float

3- for char

1

Enter length of array 4

Enter

Data Structures Lab Manual – BE II/IV – I Sem

16 DEPT OF INFORMATION TECHNOLOGY

1.To insert element

2.To erase element

3.To print listsize

4.To get index of given element

5.To get element’s index

6. Exit

7.Display

1

Enter index and element to be inserted in the list 0

12

Enter another choice 1

Enter index and element to be inserted in the list 1

23

Enter another choice 1

Enter index and element to be inserted in the list 2

45

Enter another choice 2

Enter index at which element to be deleted 2

Enter another choice 3

The size of the list is 2

Enter another choice 4

Enter element to find its index 23

The index of the element is 1

Enter another choice 5

Enter index to find the element 0

The element at the given index is 12

Enter another choice 7

12 23

Singly Linked List: an SLL is a collection of nodes wherein every element contains the

information about address of the next element in the list. Last element contains its link field as

NULL. Since there is only one link field, it is known as singly linked list. The structure of the

node is as follows:

Template<class T>

Class Node

{

Public:

};

T data;

Node<T> *link;

 Write a class SLL with following data members: size, Node<T> *first, *last;

 Write the constructor SLL() to initialize: first=last=NULL, size=0

 Implement the destructor to destroy all nodes of a list one after the other

 Implement the insert function with following possibilities:

o Create a temporary node to be inserted in list: temp;

Data Structures Lab Manual – BE II/IV – I Sem

17 DEPT OF INFORMATION TECHNOLOGY

int main()

{

o Inserting in an empty list: if (size==0) then first=last=temp;

o If list is not empty, insert at first position: temp->link=first; first=temp;

o If list is not empty, insert at last position: last->link=temp; last=temp;

o To insert at any intermediate position:

Node<T> *p=first;

for(int i=0;i<pos-1;i++)

p=p->link;

temp->link=p->link;

p->link=temp;

o Increase the list size by one: size++;

 Implement the Delete function with following possibilities:

o If list is empty, throw an exception
o Else, if pos=1, then advance the first pointer to second node, delete the

first node

o If pos==size, let a pointer p point to last but one node, make p-
>link=NULL, delete the last node, and make p as the new last node.

o If deleting an element from any intermediate position, let p point to a node
that precedes the node to be deleted q, let p->link=q->link, delete q

o Decrease the list size by 1.

 Implement the main function as follows:

try

{ int x,e;

Chain<int> a;

a.Insert(1,100);

a.Insert(2,200);

a.Insert(3,300);

a.Insert(4,400);

a.Insert(5,500);

a.Insert(6,600);

a.Display();

a.Delete(2,x);

cout<<"\nThe deleted element is ..."<<x<<"\n";

cout<<"the list after deletion is\n";

a.Display();

cout<<"\nInserting at the Backkk...\n";

cout<<"\nEnter an element to be inserted at back of list (Append)";

cin>>e;

a.InsertBack(e);

cout<<"\n The list after InsertBack function is called...\n";

a.Display();

Node<int> *n=a.GetNode();

cout<<"This is first node's data"<<n->data;

}catch(char *e)

Data Structures Lab Manual – BE II/IV – I Sem

18 DEPT OF INFORMATION TECHNOLOGY

{

cout<<e<<"\n";

}

return 0;

}

Program Validation: Execute the program with appropriate data items to obtain a linked list of

elements. Sample output is as follows:

"SLL.cpp" 163L, 3133C written

[asrar@it DS]$ g++ SLL.cpp

][asrar@it DS]$./a.out

100->200->300->400->500->600->

The deleted element is ...200

the list after deletion is

100->300->400->500->600->

Inserting at the Backkk...

Enter an element to be inserted at back of list (Append)23

The list after InsertBack function is called...

100->300->400->500->600->23->This is first node's data100[asrar@it DS]$

Data Structures Lab Manual – BE II/IV – I Sem

19 DEPT OF INFORMATION TECHNOLOGY

Program 6: Programs to implement Stacks and Queues using Linked Representation

Program Objective: The objective is to implement a stack and a queue using linked

representation

Program Description: The stacks and queues can be implemented using linked representations.

Every element of the stack and queue is stored using a node structure defined below:

Template<class T>

Class Node

{

Public:

};

T data;

Node<T> *link;

Pseudo code for Linked Stack:

 Write a class LinkedStack, with data members as : Node<T> *Top, size;

 Member functions: LinkedStack(), Push(T item), Pop(T &item), Display(), isEmpty(),etc

 Push(T item): create a temporary node temp to be pushed onto stack

o check if stack is empty, i.e. if(Top==NULL) Top=temp;

o if stack is not empty, then let : temp->link=Top;Top=temp;

o increase the size of the stack

 Pop(T &itme): check if size is zero, then return an exception as stack underflowing

o Let a temporary node temp: temp=Top;

o Top=Top->link;

o Item=temp->data; delete temp;

o Decrease the size of the stacks: size--;

 Implement the main function as follows:

int main()

{

try

{

}

int x;

Stack<int> s;

s.push(10);

s.push(20);

s.push(30);

s.push(40);

s.display();

s.pop(x);

cout<<"\nPopped element is "<<x<<endl;

catch (char *c)

{ cout<<c;}

Data Structures Lab Manual – BE II/IV – I Sem

20 DEPT OF INFORMATION TECHNOLOGY

}

Linked Queue:

 Write a class LinkedQ with data members as: Node<T> *front, *rear, size

 Member functions: LinkeDQ(), Push(T item), Pop(T &item), Display(), isEmpty(),etc

 Push(T item): create a temporary node temp to be appended at the rear end

o check if queue is empty, i.e. if(front==rear==NULL) front=rear=temp;

o if queue is not empty, then let : rear->link=temp;rear=temp;

o increase the size of the queue

 Pop(T &itme): check if size is zero, then return an exception as queue is empty

o Let a temporary node temp: temp=front;

o front=front->link;

o Item=temp->data; delete temp;

o Decrease the size of the queue: size--;

 Implement the main function as follows:

int main()

{

try

{

}

int x;

LQ<int> q;

q.Push(10);

q.Push(20);

q.Push(30);

q.Push(40);

q.Push(50);

q.Push(60);

q.Display();

q.P op(x);

cout<<"\n The deleted elememt is "<<x<<"\n";

cout<<"\n The queue after deletion is \n";

q.Display();

catch(char *c)

{

cout<<c;

}

return 0;

}

Data Structures Lab Manual – BE II/IV – I Sem

21 DEPT OF INFORMATION TECHNOLOGY

Program 7: Programs to implement Doubly Linked List and Circularly Linked List

Doubly Linked List: A DLL node contains three fields in it: data, next and previous. The next

field points the address of next element in the list and previous points to previous node in the list.

Since every node has two link fields and nodes are connected using two linked fields, hence it is

known as doubly linked list. The node structure used in DLL is as follows:

template<class T>

class Node

{

public:

T data;

Node<T> *next;

Node<T> *prev;

};

 Declare a class DLL with following data members: Node<T> *first, size

 Write the constructor DLL() to initialize: first=NULL, size=0

 Implement the destructor to destroy all nodes of a list one after the other

 Implement the insert function with following possibilities:

o Create a temporary node to be inserted in list: temp;

o Temp->data=x; temp->next=NULL; temp->prev=NULL;

o Inserting in an empty list: if (size==0) then first=temp;

o If list is not empty, insert at first position: temp->link=first; first->prev=temp;

first=temp;

o If list is not empty, insert at last position, let p point to the last node: temp-

>prev=p; p->next=temp;

o To insert at any intermediate position:

Node<T> *p=first;

for(int i=1;i<pos-1;i++)

p=p->next;
//p points to a node after which insertion takes place

temp->next=p->next;

temp->prev=p;
p->next->prev=temp;

p->next=temp;

 Implement the Delete function with following possibilities:

o If list is empty, throw an exception

o Else, if pos=1, then advance the first pointer to second node, delete the

first node

o If pos==size, let a pointer p point to last but one node, make p-

>link=NULL, delete the last node, and make p as the new last node.

Data Structures Lab Manual – BE II/IV – I Sem

22 DEPT OF INFORMATION TECHNOLOGY

o If deleting an element from any intermediate position:

for(int i=0;i<pos-2;i++)

p=p->next;//p points to a node to left of node to be dleted

q=p->next;

p->next=q->next;

q->next->prev=p;

}

x=q->data;

delete q;

size--;

int main()

{

o Decrease the list size by 1.

 Implement the main function as follows:

try

{

}

int pos,x;

DLL<int> d;

d.Insert(1,100);

d.Insert(2,200);

d.Insert(3,300);

d.Insert(4,400);

d.Insert(5,500);

d.Insert(6,600);

d.Display();

cout<<"\nEnter the position to delete a ndoe\n";

cin>>pos;

d.D elete(pos,x);

cout<<"\nThe Deleted node's data is "<<x<<endl;

cout<<"\n The list after deletion is \n";

d.Display();

catch(char *c)

{

cout<<c<<endl;

}

return 0;

}

Data Structures Lab Manual – BE II/IV – I Sem

23 DEPT OF INFORMATION TECHNOLOGY

Program 8: Program for Polynomial Arithmetic using Linked Lists

Program Objective: The objective is to write a program to represent a polynomial of degree n

using Linked Lists and to carry out the operations such as : add two polynomials, multiply two

polynomials, display etc.

Program Description: A polynomial is an expression that contains more than two terms. A

term is made up of coefficient and exponent. An example of polynomial is:

P(x) = 4x3+6x2+7x+9

A polynomial can be represented using a linked list. A linked list node can be defined such that

it contains two parts- one is the coefficient and second is the corresponding exponent. The node

definition may be given as shown below:

struct Term

{

int coef;

int exp;

Term Set(int c, int e)

{

coef=c;

exp=e;

return *this;

}

int DispCoef()

{

return coef;

}

int DispExp()

{

return exp;

}

};

 Declare a class Polynomial with data members as: chain<Term> Poly;

 Member functions: GetPoly(), Polynomial operator+(Polynomial &b), Polynomial

Operator*(Polynomial &b), Display(), etc

 GetPoly():

1. Accept the number of terms in the polynomial: n

2. Prompt the use to enter n terms consisting of exp and coef;

3. Add each term to polynomial

 Addition of two polynomials:

o Declare a third resultant polynomial, c

Data Structures Lab Manual – BE II/IV – I Sem

24 DEPT OF INFORMATION TECHNOLOGY

o Declare two pointers Node<Term> *a and Node<Term> *b to point to first terms of

each of the two polynomials to be added

o The link list representing the two polynomials are traverse till end of one of them is

reached. While doing this they are compared on term basis.

o If the exponents are equal add the terms and store it in 3rd polynomial.

o If the exponents are not equal, store the term with larger exponent in the 3rd

polynomial.

o During the traversal if the end of one of the list is reached then just append the

remaining terms of the second polynomial to the 3rd polynomial

 mul(list<T> p1,list<T> p2): Here each term of the first polynomial is multiplied with every

term of second polynomial and the new term obtained is added to the 3rd polynomial.

o Scan the polynomial one from left to right term by term, and multiply each term of
first polynomial with every term of second polynomial, and add the result to the third
polynomial

o Display the resultant product polynomial

Program Validation: The program should generate the results of polynomial addition and

multiplication for the two input polynomials

Enter 1-for int

2-for float 1

Enter

1- To enter first polynomial expression

2- To enter second polynomial expression

3-To add

4- To multiply

5- To display first expression

6- To display second expression

7-To exit 1

Enter the coefficient 2

Enter the exponent 2

Enter another choice 1

Enter the coefficient 3

Enter the exponent 1

Enter another choice 2

Enter the coefficient 4

Enter the exponent 1

Enter another choice 2

Enter the coefficient 5

Enter the exponent 0

Enter another choice 5 : 2x^2+3x^1

Enter another choice 6: 4x^1+5x^0

Enter another choice 3: 2x^2+7x^1+5x^0

Enter another choice 4: 8x^3+22x^2+15x^1

Enter another choice 7

Data Structures Lab Manual – BE II/IV – I Sem

25 DEPT OF INFORMATION TECHNOLOGY

Program 9: Program to implement Hashing

Program Objective: Objective is to write a program to demonstrate Hashing

Program Description: The program implements hash table with modulo as the hash function.

To avoid collisions in case of identical keys for two different elements, we use Linear Probing

collision resolution technique.

Pseudo code:

 Declare a constant: TableSize=128

 Declare a class for Hash Entry :

Class HashEntry

{

Public:

Int key;

Int value;

HashEntry(int key, int value)

{

This->key=key;

This->value=value;

}

};

 Declare a class : HashMap to store the hash table entries with data member: **table

 Dynamically allocate memory for this array of type HashEntry

 Implement a function : HashFunction(int key) using modulo method: key%TableSize

 Implement a function Insert(key, value):

o Compute the hash function on key to get index into hash table

o If the element exists at the generated key (collision), then go for linear probing to

find next available location in hash table

o Insert the item at the index returned by above step

 Implement a function Search(key) as follows:

o Compute hash function on the key

o Check if the key at the index is same as input key, if not may be linear probing

has stored the key at next index, so recomputed hash index

o If not found return -1, else return the corresponding element

 Implement a function Delete(key): to delete a particular element whose key is supplied as

input

 Write a main function using switch cases to perform operations like: Insert, Search,

Delete, etc based on the user’s choice

Data Structures Lab Manual – BE II/IV – I Sem

26 DEPT OF INFORMATION TECHNOLOGY

Program Validation: Ensure that the program works as indicated in the source code by running

it for several combinations of key –element pairs and carry out all operations. The sample output

for a given input is as follows:

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 1

Enter element to be inserted: 12

Enter key at which element to be inserted: 1

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 1

Enter element to be inserted: 24

Enter key at which element to be inserted: 2

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 1

Enter element to be inserted: 36

Enter key at which element to be inserted: 3

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 1

Enter element to be inserted: 48

Enter key at which element to be inserted: 4

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 1

Enter element to be inserted: 60

Enter key at which element to be inserted: 5

Operations on Hash Table

1.Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 2

Enter key of the element to be searched: 3

Element at key 3 : 36

Operations on Hash Table

1. Insert element into the table

2.Search element from the key

3.Delete element at a key

4.Exit

Enter your choice: 2

Enter key of the element to be searched: 5

Element at key 5 : 60

Data Structures Lab Manual – BE II/IV – I Sem

27 DEPT OF INFORMATION TECHNOLOGY

Program 10: Selection Sort, Insertion Sort, Heap Sort, and Shell Sort

Program Objective: The objective is to write a program to demonstrate the working of

Selection sort on a given array of integers.

Program Description: The selection sort works by finding or selecting the smallest or largest

element and placing it first or last in the sorted array. Then it finds the next smaller (greater)

element and places it next in the sorted array.

Pseudo code:

 Declare a class Selection: with data members: T *a, int n

 Member functions: SelectionSort(), IndexOfMax(), swap(int &, int &), constructor

 indexofmax(int[],int):

o initialize index=0;

o for(int i=0;i<n;i++) if(a[index]<a[i]) index=I; return index;

 SelectionSort (): The index returned by indexOfMax() is used to find the largest no and

swap the largest element with last element in unsorted array

Program Validation: Run the program by passing an array of integers, characters, etc and

obtain a sorted sequence. The sample output for a given input is as follows:

Enter the number of elements 5

Enter the elements

4 6 3 87 2

sorted elements are

2 3 4 6 87

Program Objective: The objective is to write a program to demonstrate the working of Insertion

sort on a given array of integers.

Program Description: Insertion sort iterates, consuming one input element each repetition, and

growing a sorted output list. An iteration of insertion sort removes one element from the input

data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no

input elements remain.

Pseudo Code:

 Declare a class Insertion: with data members: T *a, int size

 Write the constructor to dynamically allocate memory to array and initialize the size

https://en.wikipedia.org/wiki/Iteration

Data Structures Lab Manual – BE II/IV – I Sem

28 DEPT OF INFORMATION TECHNOLOGY

 Insert(T e, int i) // insert e into a sorted array of size i

{

arr[0]=e; // store e at index 0

While(e<arr[i])

{

Arr[i+1]=arr[i];

Decrement I;

}

arr[i+1]=e;

}

 InsertionSort()

{

For(int j=2;j<=n;j++)

{

T temp=arr[j];

Insert(temp, j-1);

}

}

Program Validation: Run the program with an array of inputs and obtain a sorted sequence of

array elements in ascending order. The sample output for a set of given inputs is as follows:

Enter the elements in the array: 5 4 3 2 1

The Sorted Sequence is : 1 2 3 4 5

Program Objective: The objective is to sort the given sequence of elements using Max Heap

data structure.

Program Description: A Max heap is a complete binary tree that is also a Max Tree, in which

value at the parent is as large as value at its children. In a max heap, the root of heap stores the

largest element. In sorting data using max heap, we remove the root, place it at position A[n] and

replace the root by last child (w.r.t. level order) of max tree. Now since the root has changed., we

need to check if the heap property is satisfied by new root. If not then reheapify the heap. This

process of removing the root and reheapification continues till heap becomes empty.

Data Structures Lab Manual – BE II/IV – I Sem

29 DEPT OF INFORMATION TECHNOLOGY

HEAPSORT(A)

1. BUILD‐MAX‐HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1], A[i]

4. heap‐size[A] ← heap‐size[A] − 1

5. MAX ‐ HEAPIFY(A, 1)

Program Validation: Run the program with a set of inputs and obtain a sorted sequence of

elements. Sample output for a given set of integers is as follows:

Enter the element 1

5

Enter the element 2

4

Enter the element 3

3

Enter the element 4

2

Enter the element 5

1

Before Sorting...

The array elements are...

5 4 3 2 1

int SOrt, value of x is...5

int SOrt, value of x is...4

int SOrt, value of x is...3

int SOrt, value of x is...2

int SOrt, value of x is...1

The array elements are...

1 2 3 4 5

Data Structures Lab Manual – BE II/IV – I Sem

30 DEPT OF INFORMATION TECHNOLOGY

Program 11: Quick Sort and Merge Sort

Program Objective: objective is to write a program to sort the given set of elements using

Quick Sort.

Program Description: quick sort works by selecting one of the element (mostly the first

element) as the pivot element and rearranges the remaining elements such that elements to the

left of pivot are smaller than or equal to pivot and elements to the right of the pivot are larger

than or equal to pivot. Once the pivot element is placed at its right position, then remaining

elements to its left and right are recursively sorted using quick sort

Pseudo Code:

Create a class QucikSort with data members as: T *a, int n

Member functions: Constructor, QSort(low, high), Partition(a, low, high), and Display()

QucikSort(int size)

{

n=size;

a=new T [n];

read the elements into aray;

}

Void QSort(int low, int high)

{

If(low<high)

{

Obtain a partition of array (a, low, high+1) in j;

QSort(low, j-1);

QSort(j+1, high);

}

}

int partition(a, low, high)

{

Designate first element as pivot element;

Let i be low and j be high;

do

{

do

{

i++;

}while(a[i]<p);

do

{

j--;

}while(a[j]>p);

Data Structures Lab Manual – BE II/IV – I Sem

31 DEPT OF INFORMATION TECHNOLOGY

if(i<j)

{

}

}while(i<=j);

T temp=a[j];

a[j]=a[low];

a[low]=temp;

return j;

}

T temp=a[i];

a[i]=a[j];

a[j]=temp;

Display() { display the elements of sorted array;}

Program Validation: Run the program with an array as input and obtain the sorted array as

result. Sample output for given input is as follows:

enter the element 0

65

enter the element 1

45

enter the element 2

66

enter the element 3

34

enter the element 4

778

Array Before Sorting is....

65->45->66->34->778->

Array after sorting is...

34->45->65->66->778->

Program Objective: The objective is to sort a given set of elements using Merge Sort.

Program Description: The program accepts an array, sorts the array using merge sort. The

given array is divided at its midpoint, (low+high)/2, and then arr[low:mid] and arr[mid+1:high]

are sorted using merge sort recursively. The arrays are subdivided into sub arrays as long as they

have a single element, then the merge process follows merging the subarrays into a sorted

sequence.

Pseudo Code:

Algorithm MergeSort(low, high)

{

Data Structures Lab Manual – BE II/IV – I Sem

32 DEPT OF INFORMATION TECHNOLOGY

If(low<high)

{

//divide p into sub problems

Mid=floor((low+high)/2);

MergeSort(low,mid);

MergeSort(mid+1,high);

Merge (low, mid, high);

}

}

Algorithm Merge(low, mid, high)

{

h=low, i=low, j=mid+1;

while(h<=mid and j<=high) do

{

If(a[h]<=a[j]) then

{

}

Else

{

}

i++;

}

B[i]=a[h];

h++;

b[i]=a[j];

j++;

If(h>mid) for(k=j;k<high;k++) { b[i]=a[k]; i++; }

else for(k=h;k<=mid;k++) { b[i]=a[k]; i++;}

}

Program Validation: Execute the program with an array of integers and obtain a sorted

sequence of elements: sample output for a given set of inputs is as follows:

Data Structures Lab Manual – BE II/IV – I Sem

33 DEPT OF INFORMATION TECHNOLOGY

Enter the size of array..

6

Enter the 6 elements into array

65

45

57

78

45

23

Elements before sorting are..

65 45 57 78 45 23

Elemeents after sorting are..

low is 0 mid is 2 high is5

low is 0 mid is 1 high is2

low is 0 mid is 0 high is1

in Mergelow is 0 mid is 0 high is1

in Mergelow is 0 mid is 1 high is2

low is 3 mid is 4 high is5

low is 3 mid is 3 high is4

in Mergelow is 3 mid is 3 high is4

in Mergelow is 3 mid is 4 high is5

in Mergelow is 0 mid is 2 high is5

23 45 45 57 65 78

Data Structures Lab Manual – BE II/IV – I Sem

34 DEPT OF INFORMATION TECHNOLOGY

Program 12: Tree Traversals and Graph Search Methods

Program Objective: The objective is to implement a binary search tree and its traversals such

as Inorder, Preorder, and Postorder on a given binary tree.

Program Description: The binary trees in this program are represented using an array.

 root of the tree (A): array position 1

 root's left child (B): array position 2

 root's right child (C): array position 3

 left child of node in array position K: array position 2K

 right child of node in array position K: array position 2K+1

Pseudo Code:

#include<iostream.h>

template<class T>

class BTNode

{

public:

T data;

BTNode<T> *lchild;

BTNode<T> *rchild;

BTNode()

{

lchild=rchild=0;

}

BTNode(T elem)

{

data=elem;

rchild=lchild=0;

}

BTNode(BTNode<T> *lc,T elem,BTNode<T> *rc)

{

data=elem;

lchild=lc;

rchild=rc;

}

};

template<class T>

class BinaryTree

{

private:

BTNode<T> *root;

void Inorder(BTNode<T> *root);

void Preorder(BTNode<T> *root);

Data Structures Lab Manual – BE II/IV – I Sem

35 DEPT OF INFORMATION TECHNOLOGY

public:

void Postorder(BTNode<T> *root);

void Visit(BTNode<T> *root);

int Height(BTNode<T> *root);

BinaryTree()

{

root=NULL;

}

~BinaryTree(){}

bool IsEmpty()

{

return root==NULL;

}

void MakeTree(T elem,BinaryTree<T> *l,BinaryTree<T> *r);

void Inorder();

void Preorder();

void Postorder();

int Height();

};

template<class T>

void BinaryTree<T>::Visit(BTNode<T> *root)

{

cout<<root->data;

}

template<class T>

void BinaryTree<T>::Inorder(BTNode<T> *root)

{

if(root!=NULL)

{

Inorder(root->lchild);

Visit(root);

Inorder(root->rchild);

}

}

template<class T>

void BinaryTree<T>::Preorder(BTNode<T> *root)

{

if(root!=NULL)

{

Visit(root);

Preorder(root->lchild);

Preorder(root->rchild);

}

}

template<class T>

void BinaryTree<T>::Postorder(BTNode<T> *root)

Data Structures Lab Manual – BE II/IV – I Sem

36 DEPT OF INFORMATION TECHNOLOGY

{

if(root!=NULL)

{

Postorder(root->lchild);

Postorder(root->rchild);

Visit(root);

}

}

template<class T>

void BinaryTree<T>::MakeTree(T elem,BinaryTree<T> *l,BinaryTree<T> *r)

{

root=new BTNode<T>(l->root,elem,r->root);

}

template<class T>

int BinaryTree<T>::Height()

{

int h;

h=Height(root);

return h;

}

template<class T>

int BinaryTree<T>::Height(BTNode<T> *root)

{

if(root==0)

return 0;

int lh=Height(root->lchild);

int rh=Height(root->rchild);

if(lh>rh)

return ++lh;

else

return ++rh;

}

template<class T>

void BinaryTree<T>::Preorder()

{

Preorder(root);

}

template<class T>

void BinaryTree<T>::Inorder()

{

Inorder(root);

}

template<class T>

void BinaryTree<T>::Postorder()

{

Data Structures Lab Manual – BE II/IV – I Sem

37 DEPT OF INFORMATION TECHNOLOGY

Postorder(root);

}

int main()

{

BinaryTree<char> ll;

BinaryTree<char> lr;

BinaryTree<char> l;

l.MakeTree('a',&ll,&lr);

BinaryTree<char> rl;

BinaryTree<char> rr;

BinaryTree<char> r;

r.MakeTree('b',&rl,&rr);

BinaryTree<char> t;

t.MakeTree('+',&l,&r);

cout<<"Inorder traversal is";

t.Inorder();

cout<<"Preorder traversal is";

t.Preorder();

cout<<"Postorder traversal is";

t.Postorder();

return 0;

}

Program Validation: Sample output for an expression tree +

a b

Inorder traversal isa + b

Preorder traversal is+ a b

Postorder traversal isa b +

Program Objective: The objective is to write a program to represent a graph using Adjacency

Matrix and perform Graph Search Methods such as Breadth First Search BFS and Depth First

Search DFS.

Program Description: This program represents the undirected graph using an Adjacency

Matrix. An adjacency matrix is a 0-1 matrix, where a 1 indicates that edge (i,j) belongs to edge

set of graph and a 0 indicates edge (i,j) does not belong to edge set of graph. To carry out BFS

we use a Queue data structure and for DFS we use stacks.

Data Structures Lab Manual – BE II/IV – I Sem

38 DEPT OF INFORMATION TECHNOLOGY

Pseudo Code:

 Declare a class Graph: with following data members:

int **a;

int n;

int e;

int *visit;

 Member functions: Constructor, and following functions

bool isEmpty();

int NumberOfVertices();

int NumberOfEdges();

int Degree(int u);

bool EdgeExists(int u, int v);

void InsertEdge(int u, int v);

void DeleteEdge(int u, int v);

void DisplayAdjMatrix();

void BFS(int u);

void DFS();

 DFS Functions:

void Graph::DFS(int v)

{

visit[v]=1;

int w;

for(int i=1;i<=n;i++)

{

if(a[v][i]==1 && visit[i]==0)

{

//w is found such that it is adj and not visited yet

w=i;

cout<<w<<"\t";

visit[w]=1;

DFS(w);

}

}

}

 Degree Function:

int Graph::Degree(int u)

{

int sum=0;

for(int j=1;j<=n;j++)

sum=sum+a[u][j];//row sum

return sum;

}

 Insert Edge function

Data Structures Lab Manual – BE II/IV – I Sem

39 DEPT OF INFORMATION TECHNOLOGY

void Graph::InsertEdge(int u, int v)

{

if(u<1 || u>n || v<1 || v>n || a[u][v]==1)

throw "Bad Input, No such Element in Vertex Set";

a[u][v]=1;

a[v][u]=1;

}

 BFS Function

void Graph:: BFS(int v)

{

int visit[n+1];

Queue<int> q(100);

for(int i=1;i<=n;i++)

{

visit[i]=0;

}

for(int i=1;i<=n;i++)

cout<<visit[i]<<"\t";

cout<<endl;

visit[v]=1;

q.push(v);

while(!q.isEmpty())

{

int w=q.Front();

cout<<w<<" ";

q.pop();

for(int i=1;i<=n;i++)

{

if(a[w][i]==1 && visit[i]==0)

{

q.push(i);

visit[i]=1;

}

}

}

}

Program Validation: Execute the program by providing information about the graph using a

two dimensional matrix and obtain the Traversals on the graph using DFS and BFS methods

Enter the number of Vertices in Graph

4

Enter the number of distinct unordered pairs

4

Data Structures Lab Manual – BE II/IV – I Sem

40 DEPT OF INFORMATION TECHNOLOGY

enter the Vertex u of Edge 1

1

Enter the Vertex V of Edge 1

2

enter the Vertex u of Edge 2

1

Enter the Vertex V of Edge 2

3

enter the Vertex u of Edge 3

2

Enter the Vertex V of Edge 3

4

enter the Vertex u of Edge 4

3

Enter the Vertex V of Edge 4

4

The Adjacency Matrix of G is ***********

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

The Breadth First Search Traversal of Graph si....

1 2 3 4

The Depth First Search Traversal of Grpah is ,....

Enter the starting vertex to begin DFS

1

2 4 3

Data Structures Lab Manual – BE II/IV – I Sem

41 DEPT OF INFORMATION TECHNOLOGY

Program 13: AVL Trees

Program Objective: The objective is to represent the AVL trees using Linked representation

and perform operations like: Insert, Delete, Rotation caused due to Insert and delete, traversals,

etc.

Program Description: The program demonstrates the operations on an AVL tree using linked

representation. It performs rotations caused by insert operations like: LL , RR, RL and LR .

include<iostream>

#include<cstdio>

#include<sstream>

#include<algorithm>

#define pow2(n) (1 << (n))

using namespace std;

/*

* Node Declaration

*/

struct avl_node

{

int data;

struct avl_node *left;

struct avl_node *right;

}*root;

/*

* Class Declaration

*/

class avlTree

{

public:

int height(avl_node *);

int diff(avl_node *);

avl_node *rr_rotation(avl_node *);

avl_node *ll_rotation(avl_node *);

avl_node *lr_rotation(avl_node *);

avl_node *rl_rotation(avl_node *);

avl_node* balance(avl_node *);

avl_node* insert(avl_node *, int);

void display(avl_node *, int);

void inorder(avl_node *);

void preorder(avl_node *);

void postorder(avl_node *);

avlTree()

{

root = NULL;

}

};

/*

* Main Contains Menu

*/

int main()

{

Data Structures Lab Manual – BE II/IV – I Sem

42 DEPT OF INFORMATION TECHNOLOGY

int choice, item;

avlTree avl;

while (1)

{

cout<<"\n --------------------"<<endl;

cout<<"AVL Tree

Implementation"<<endl;

cout<<"\n --------------------"<<endl;

cout<<"1.Insert Element into the

tree"<<endl;

cout<<"2.Display Balanced AVL

Tree"<<endl;

cout<<"3.InOrder traversal"<<endl;

cout<<"4.PreOrder traversal"<<endl;

cout<<"5.PostOrder traversal"<<endl;

cout<<"6.Exit"<<endl;

cout<<"Enter your Choice: ";

cin>>choice;

switch(choice)

{

case 1:

cout<<"Enter value to be inserted: ";

cin>>item;

root = avl.insert(root, item);

break;

case 2:

if (root == NULL)

{

cout<<"Tree is Empty"<<endl;

continue;

}

cout<<"Balanced AVL

Tree:"<<endl;

avl.display(root, 1);

break;

case 3:

cout<<"Inorder Traversal:"<<endl;

avl.inorder(root);

cout<<endl;

break;

case 4:

cout<<"Preorder Traversal:"<<endl;

avl.preorder(root);

cout<<endl;

break;

case 5:

cout<<"Postorder Traversal:"<<endl;

avl.postorder(root);

cout<<endl;

break;

case 6:

exit(1);

break;

default:

cout<<"Wrong Choice"<<endl;

}

}

return 0;

}

/*

* Height of AVL Tree

Data Structures Lab Manual – BE II/IV – I Sem

43 DEPT OF INFORMATION TECHNOLOGY

*/

int avlTree::height(avl_node *temp)

{

int h = 0;

if (temp != NULL)

{

int l_height = height (temp->left);

int r_height = height (temp->right);

int max_height = max (l_height,

r_height);

h = max_height + 1;

}

return h;

}

/*

* Height Difference

*/

int avlTree::diff(avl_node *temp)

{

int l_height = height (temp->left);

int r_height = height (temp->right);

int b_factor= l_height - r_height;

return b_factor;

}

/*

* Right- Right Rotation

*/

avl_node *avlTree::rr_rotation(avl_node

*parent)

{

avl_node *temp;

temp = parent->right;

parent->right = temp->left;

temp->left = parent;

return temp;

}

/*

* Left- Left Rotation

*/

avl_node *avlTree::ll_rotation(avl_node

*parent)

{

avl_node *temp;

temp = parent->left;

parent->left = temp->right;

temp->right = parent;

return temp;

}

/*

* Left - Right Rotation

*/

avl_node *avlTree::lr_rotation(avl_node

*parent)

{

avl_node *temp;

temp = parent->left;

parent->left = rr_rotation (temp);

return ll_rotation (parent);

}

Data Structures Lab Manual – BE II/IV – I Sem

44 DEPT OF INFORMATION TECHNOLOGY

/*

* Right- Left Rotation

*/

avl_node *avlTree::rl_rotation(avl_node

*parent)

{

avl_node *temp;

temp = parent->right;

parent->right = ll_rotation (temp);

return rr_rotation (parent);

}

/*

* Balancing AVL Tree

*/

avl_node *avlTree::balance(avl_node

*temp)

{

int bal_factor = diff (temp);

if (bal_factor > 1)

{

if (diff (temp->left) > 0)

temp = ll_rotation (temp);

else

temp = lr_rotation (temp);

}

else if (bal_factor < -1)

{

if (diff (temp->right) > 0)

temp = rl_rotation (temp);

else

temp = rr_rotation (temp);

}

return temp;

}

/*

* Insert Element into the tree

*/

avl_node *avlTree::insert(avl_node *root,

int value)

{

if (root == NULL)

{

root = new avl_node;

root->data = value;

root->left = NULL;

root->right = NULL;

return root;

}

else if (value < root->data)

{

root->left = insert(root->left, value);

root = balance (root);

}

else if (value >= root->data)

{

root->right = insert(root->right, value);

root = balance (root);

}

return root;

Data Structures Lab Manual – BE II/IV – I Sem

45 DEPT OF INFORMATION TECHNOLOGY

}

}

/* /*

inorder (tree->right);

* Display AVL Tree

*/

void avlTree::display(avl_node *ptr, int

level)

{

int i;

if (ptr!=NULL)

{

display(ptr->right, level + 1);

printf("\n");

if (ptr == root)

cout<<"Root -> ";

for (i = 0; i < level && ptr != root; i++)

cout<<" ";

cout<<ptr->data;

display(ptr->left, level + 1);

}

}

/*

* Inorder Traversal of AVL Tree

*/

void avlTree::inorder(avl_node *tree)

{

if (tree == NULL)

return;

inorder (tree->left);

cout<<tree->data<<" ";

* Preorder Traversal of AVL Tree

*/

void avlTree::preorder(avl_node *tree)

{

if (tree == NULL)

return;

cout<<tree->data<<" ";

preorder (tree->left);

preorder (tree->right);

}

/*

* Postorder Traversal of AVL Tree

*/

void avlTree::postorder(avl_node *tree)

{

if (tree == NULL)

return;

postorder (tree ->left);

postorder (tree ->right);

cout<<tree->data<<" ";

}

Program Validation: Sample output of the

program is as follows:

$ g++ avl_tree.cpp

$ a.out

Data Structures Lab Manual – BE II/IV – I Sem

46 DEPT OF INFORMATION TECHNOLOGY

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Tree is Empty

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 8

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

Root -> 8

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 5

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

Root -> 8

5

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

Data Structures Lab Manual – BE II/IV – I Sem

47 DEPT OF INFORMATION TECHNOLOGY

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 4

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

8

Root -> 5

4

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 11

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

11

8

Root -> 5

4

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 15

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

Data Structures Lab Manual – BE II/IV – I Sem

48 DEPT OF INFORMATION TECHNOLOGY

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

15

11

8

Root -> 5

4

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 3

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 2

Balanced AVL Tree:

15

11

8

Root -> 5

4

3

AVL Tree Implementation

1.Insert Element into the tree

2.Display Balanced AVL Tree

3.InOrder traversal

4.PreOrder traversal

5.PostOrder traversal

6.Exit

Enter your Choice: 1

Enter value to be inserted: 6

Data Structures Lab Manual – BE II/IV – I Sem

49 DEPT OF INFORMATION TECHNOLOGY

ANNEXURE– I: Data Structures Laboratory – OU Syllabus

Instrucitons 3 Periods per week

Duration of University Examination 3 Hours

University Examinations 50 Marks

Sessional 25 Marks

List of Experiments:

1. Implementation of Array as an ADT

2. Implementation of String as an ADT

3. Implementation of Stacks and Queues

4. Infix to Postfix conversion and postfix evaluation

5. Polynomial Arithmetic using Linked Lists

6. Implementation of Binary Search and Hashing

7. Implementation of Selection, Shell, Merge and Quick Sort

8. Implementation of Tree Traversal on Binary Trees

9. Implementation of Heap Sort

10. Implementation of Operations on AVL Trees

11. Implementation of Traversals on Graphs

12. Implementation of Splay Trees

	1. Introduction to Data Structures
	Abstract data types
	Linear data structures
	Non Linear Data Structures
	ADT Stack
	Operations on Linked Lists:
	Types of Linked Lists:
	Circular Linked List:
	Doubly Linked List:
	Inserting into a SLL:
	AVL Tree: An empty tree is height-balanced. If T is a nonempty binary tree with TL and TR
	(3) The Balance factor, BF(T) , of a node T is a binary tree is defined to be hL – hR, where hL and hR, respectively, are the heights of left and right subtrees of T. For any node T in an AVL tree, BF(T) = -1, 0, or 1.

	Graphs:
	Sorting:
	Program 1: Overview of C++ and Programs to demonstrate C++ classes and Templates
	Rectangle Class Pseudo Code:
	Validation:
	Program to find Max and Min of an Array:
	Sample output:

	Program 2: Implementation of Array ADT and String ADT
	Pseudo Code:
	10. Program 3: Programs for Stack, Queue and Circular Queue.
	Member function details:
	Sample Output:
	Member function details: (1)
	Sample Output: (1)
	Circular Queues:
	Member function details: (2)
	Program 4: Program to convert an Infix expression into Postfix and Evaluate Postfix Expression
	Pseudo Code: (1)

	Program 5: Program to implement a Linear List and Singly Linked List
	Program 6: Programs to implement Stacks and Queues using Linked Representation
	Pseudo code for Linked Stack:
	Linked Queue:
	Program 7: Programs to implement Doubly Linked List and Circularly Linked List
	Program 8: Program for Polynomial Arithmetic using Linked Lists
	Program 9: Program to implement Hashing
	Pseudo code:

	Program 10: Selection Sort, Insertion Sort, Heap Sort, and Shell Sort
	Pseudo code:
	Pseudo Code:

	Program 11: Quick Sort and Merge Sort
	Pseudo Code:
	Pseudo Code: (1)

	Program 12: Tree Traversals and Graph Search Methods
	Pseudo Code:
	Pseudo Code: (1)

	Program 13: AVL Trees
	ANNEXURE– I: Data Structures Laboratory – OU Syllabus

