
INFORMATION TECHNOLOGY DEPARTMENT

JAVA PROGRAMMING LAB MANUAL

JAVA PROGRAMMING LAB MANUAL

TABLE OF CONTENTS

S. No

.
CONTENTS PAGE No.

1. Introduction to JAVA PROGRAMMING laboratory V

Programs

1. Write a Java program to display Welcome message. 1

2. Write a Java program to demonstrate Command line arguments 2

3.
Write a Java program to demonstrate Scanner(I/O Streams) 4

4. Write a Java program to demonstrate BufferedReader(I/O Streams) 6

5. Write a Java program to demonstrate Arrays. 8

6. Write a Java program to find both the largest and smallest number in a list of

integers.

10

7.

Write a Java program that prints all real solutions to the quadratic equation

ax2 + bx + c = 0. Read in a, b, c and use the quadratic formula. If the

discriminant b2 -4ac is negative, display a message stating that there are no

real solutions.

12

8. Write a Java program that uses both recursive and non recursive functions to

print the nth value in the Fibonacci sequence.

14

JAVA PROGRAMMING LAB MANUAL

9.
Write a Java Program that reads a line of integers, and then displays each

integer, and the sum of all the integers (Use StringTokenizer class of

17

10. Write a Java program that checks whether a given string is palindrome or

not.

19

11. Write a Java program to sort a list of names in ascending order. 21

12. A program to illustrate the concept of class with Constructor overloading 23

13. A program to illustrate the concept of class with Method overloading 25

14. A program to illustrate the concept of Dynamic Polymorphism. 27

15. A program to illustrate the concept of Single inheritance 30

16. A program to illustrate the concept of Multi level inheritance 32

17. A program to illustrate user defined packages. 35

18. A program to illustrate the concept of Abstract Classes. 37

19. A program using Interfaces. 40

20. Write a Java program to implement the concept of exception handling 42

21. A program to illustrate the concept of threading using Thread Class 46

22. A program to illustrate the concept of threading using runnable Interface. 48

23. A program to illustrate the concept of multi-threading that creates three

threads. First thread displays ―Good Morning‖ every one second, the second

50

24. A program to illustrate the concept of Thread synchronization. 52

25. Write a Java program to implement serialization concept 53

26. Write a Java program that reads a file name from the user, and then displays

information about whether the file exists, whether the file is readable,

55

27. Write a Java program that reads a file and displays the file on the screen,

with a line number before each line.

57

28. Write a Java program that displays the number of characters, lines and words

in a text file.

59

29. Write a Java program to illustrate collection classes like (i) Array List, (ii)

Iterator, (iii)Hash map.

62

30. Write a Java program for handling Key events 64

JAVA PROGRAMMING LAB MANUAL

31. Write a Java program for handling Mouse events 66

32. Develop an applet that displays a simple message 68

33. Develop an applet that displays lines, rectangles, ovals, square etc. 70

34. Write a Java program to illustrate GUI Components using AWT. 72

35. Write a Java program to change a specific character in a file. 74

36. Write a Java program that correctly implements producer consumer problem

using the concept of inter thread communication.

76

 Annexure – I : OU prescribed programs for Java Programming Laboratory 79

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT V

Introduction TO JAVA Programming Laboratory

JAVA: Java is a high-level programming language originally developed by Sun

Microsystems and released in 1995. Java runs on a variety of platforms, such as Windows,

Mac OS, and the various versions of UNIX. James Gosling initiated the Java language project

in June 1991 for use in one of his many set-top box projects. The language, initially called

Oak after an oak tree that stood outside Gosling's office, also went by the name Green and

ended up later being renamed as Java, from a list of random words.

Laboratory Objective

Upon successful completion of this Lab the student will be able to:

1. Understand the concept of OOP as well as the purpose and usage principles of

inheritance, polymorphism, encapsulation and method overloading.

2. Understand fundamentals of programming such as variables, conditional and iterative

execution, methods, etc.

3. Identify classes, objects, members of a class and the relationships among them needed

for a specific problem.

4. Understand fundamentals of object-oriented programming in Java, including defining

classes, invoking methods, using class libraries, etc.

5. Create Java application programs using sound OOP practices (e.g., interfaces and

APIs) and proper program structuring (e.g., by using access control identifies,

automatic documentation through comments, error exception handling)

6. Have the ability to write a computer program to solve specified problems.

7. Develop programs using the Java Collection API as well as the Java standard class

library.

8. Use the Java SDK environment to create, debug and run simple Java programs

Overview of Java

Java Is Important to the Internet, The Internet helped catapult Java to the forefront of

programming, and Java, in turn, has had a profound effect on the Internet. The reason for this

is quite simple: Java expands the universe of objects that can move about freely in

cyberspace. In a network, two very broad categories of objects are transmitted between the

server and our personal computer: passive information and dynamic, active programs.

Java can be used to create two types of programs: applications and applets. An application is

a program that runs on your computer, under the operating system of that computer. An

applet is an application designed to be transmitted over the Internet and executed by a Java-

compatible Web browser.

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT VI

Features of JAVA

 Simple

 Secure

 Portable

 Object-oriented

 Robust

 Multithreaded

 Architecture-neutral

 Interpreted

 High performance

 Distributed

 Dynamic

JDK

The Java Development Kit (JDK) is an implementation of either one of the Java SE, Java EE

or Java ME platforms. The JDK includes a private JVM and a few other resources to finish

the development of a Java Application.

The JDK has as its primary components a collection of programming tools, including:

 appletviewer – this tool can be used to run and debug Java applets without a web

browser

 apt – the annotation-processing tool.

 extcheck – a utility that detects JAR file conflicts

 idlj – the IDL-to-Java compiler. This utility generates Java bindings from a given Java

IDL file.

 jabswitch – the Java Access Bridge. Exposes assistive technologies on Microsoft

Windows systems.

 java – the loader for Java applications. This tool is an interpreter and can interpret the

class files generated by the javac compiler. Now a single launcher is used for both

development and deployment. The old deployment launcher, jre, no longer comes

with Sun JDK, and instead it has been replaced by this new java loader.

 javac – the Java compiler, which converts source code into Java bytecode

 javadoc – the documentation generator, which automatically generates documentation

from source code comments

 jar – the archiver, which packages related class libraries into a single JAR file. This

tool also helps manage JAR files.

 javafxpackager – tool to package and sign JavaFX applications

 jarsigner – the jar signing and verification tool

 javah – the C header and stub generator, used to write native methods

 javap – the class file disassembler

 javaws – the Java Web Start launcher for JNLP applications

 JConsole – Java Monitoring and Management Console

 jdb – the debugger

 jhat – Java Heap Analysis Tool (experimental)

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT VII

 jinfo – This utility gets configuration information from a running Java process or

crash dump. (experimental)

 jmap – This utility outputs the memory map for Java and can print shared object

memory maps or heap memory details of a given process or core dump.

(experimental)

 jmc – Java Mission Control

 jps – Java Virtual Machine Process Status Tool lists the instrumented HotSpot Java

Virtual Machines (JVMs) on the target system. (experimental)

 jrunscript – Java command-line script shell.

 jstack – utility that prints Java stack traces of Java threads (experimental)

 jstat – Java Virtual Machine statistics monitoring tool (experimental)

 jstatd – jstat daemon (experimental)

 keytool – tool for manipulating the keystore

 pack200 – JAR compression tool

 policytool – the policy creation and management tool, which can determine policy for

a Java runtime, specifying which permissions are available for code from various

sources

 VisualVM – visual tool integrating several command-line JDK tools and lightweight

performance and memory profiling capabilities

 wsimport – generates portable JAX-WS artifacts for invoking a web service.

 xjc – Part of the Java API for XML Binding (JAXB) API. It accepts an XML schema

and generates Java classes.

1. Data Types used in JDK

Each row contains the data type and size and range of the data type. The list of available data

types in Java is shown in table below

Name Width Range

byte 8 –128 to 127

short 16 –32,768 to 32,767

int 32 –2,147,483,648 to 2,147,483,647

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

float 32 1.4e−045 to 3.4e+038

double 64 4.9e–324 to 1.8e+308

Char 2 0 to 65,536

Boolean 1 True or false

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT VIII

2. Security

As we are likely aware, every time that we download a ―normal‖ program, we are risking a

viral infection. Prior to Java, most users did not download executable programs frequently,

and those who did scan them for viruses prior to execution. Even so, most users still worried

about the possibility of infecting their systems with a virus. In addition to viruses, another

type of malicious program exists that must be guarded against. This type of program can

gather private information, such as credit card numbers, bank account balances, and

passwords, by searching the contents of your computer‘s local file system. Java answers both

of these concerns by providing a ―firewall‖ between a networked application and our

computer.

When we use a Java-compatible Web browser, we can safely download Java applets without

fear of viral infection or malicious intent. Java achieves this protection by confining a Java

program to the Java execution environment and not allowing it access to other parts of the

computer.

The ability to download applets with confidence that no harm will be done and that no

security will be breached is considered by many to be the single most important aspect of

Java.

The key that allows Java to solve both the security and the portability problems just described

is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is

a highly optimized set of instructions designed to be executed by the Java run-time system,

which is called the Java Virtual Machine (JVM). That is, in its standard form, the JVM is an

interpreter for bytecode. This may come as a bit of a surprise. Translating a Java program into

bytecode helps makes it much easier to run a program in a wide variety of environments. The

reason is straightforward: only the

JVM needs to be implemented for each platform. Once the run-time package exists for a

given system, any Java program can run on it. Because the execution of every Java program

is under the control of the JVM, the JVM can contain the program and prevent it from

generating side effects outside of the system. When a program is interpreted, it generally runs

substantially slower than it would run if compiled to executable code.

3. System Requirement

Hardware Configuration

System Configuration: Windows XP, Intel Xeon 3.0 GHz CPU, Cache, 1GB

DDR RAM

Software Configuration

JDK Software Version: - JDK1.7 Version: 7.1.7.0 40

Browser: Internet Explorer / Google Chrome

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT IX

4. PATH and CLASSPATH

Setting PATH and CLASSPATH environment variables on Microsoft Windows, Solaris, and

Linux are as follows.

Install the Java Development Kit (JDK) software.

After installing the software, the JDK directory will have the structure shown below.

The bin directory contains both the compiler and the launcher.

Update the PATH Environment Variable (Microsoft Windows)
We can run Java applications just fine without setting the PATH environment variable. Or,

we can optionally set it as a convenience.

Set the PATH environment variable if we want to be able to conveniently run the executables

(javac.exe, java.exe, javadoc.exe, and so on) from any directory without having to type the

full path of the command. If we do not set the PATH variable, we need to specify the full

path to the executable every time we run it, such as:

C:\Java\jdk1.7.0\bin\javac MyClass.java

The PATH environment variable is a series of directories separated by semicolons (;).

Microsoft Windows looks for programs in the PATH directories in order, from left to right.

We should have only one bin directory for the JDK in the path at a time (those following the

first are ignored), so if one is already present, we can update that particular entry.

The following is an example of a PATH environment variable:

C:\Java\jdk1.7.0\bin;C:\Windows\System32\;C:\Windows\;C:\Windows\System32\Wbem

It is useful to set the PATH environment variable permanently so it will persist after

rebooting. To make a permanent change to the PATH variable, use the System icon in the

Control Panel. The precise procedure varies depending on the version of Windows:

Windows XP

1. Select Start, select Control Panel. double click System, and select the Advanced

tab.

2. Click Environment Variables. In the section System Variables, find the PATH

environment variable and select it. Click Edit. If the PATH environment variable

does not exist, click New.

3. In the Edit System Variable (or New System Variable) window, specify the value

of the PATH environment variable. Click OK. Close all remaining windows by

clicking OK.

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 1

Program 1

Java program to display Welcome message.

Problem Definition

Syntax of the java program to display a message.

Problem Description
This program has given for understanding of the basic Java program and the

execution procedure. The file name should be given as the name of the class which is having

main method.

Pseudocode

/* This is a simple Java program. Call this file "Example.java". */

class name_of_the_class {

// Your program begins with a call to main().

public static void main(String args[]) {

// display the ouput using the following command

System.out.println("output to be displayed.");

}

}

Problem Validation
Compile the program using the following command

Javac Example.java

Execute the program using

Java Example

Input:

No Input

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 2

Program 2

Java program to demonstrate Command line arguments.

Problem Definition

Reading the data from the user.

Problem Description

The java command-line argument is an argument i.e. passed at the time of running the

java program.

The arguments passed from the console can be received in the java program and it can

be used as an input and will take as String arguments through main method arguments.

Pseudocode

Class CommandArgs

{

Public static void main(String args[]) {

Declare 2 variables n1, n2

read first argument in n1

Read 2nd arguent in n2

Display n1, n2

Display sum of n1 and n2

}

}

Problem Validation
Compile the program using the following command

Javac CommandArgs.java

Execute the program using

Java CommandArgs 10 20

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 3

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 4

Program 3

Write a Java program to demonstrate Scanner(I/O Streams)

Problem Definition

Reading the data from the user.

Problem Description
The Scanner class is a class in java.util, which allows the user to read values of

various types. The Scanner looks for tokens in the input. A token is a series of characters that

ends with what Java calls whitespace.

Syntax for Creating Object:

Scanner in = new Scanner(System.in);

Pseudo Code
import the package java.util.*

Class ScannerEx

{

Public static void main(String args[]) {

Declare 2 variables n1, n2

Create scanner object

read n1 using Scanner Object

Read n2 using Scanner Object

Display n1, n2

Display sum of n1 and n2

}

}

Problem Validation
Compile the program using the following command

Javac ScannerEx.java

Execute the program using

Java ScannerEx

Input:

10
20

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 5

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 6

Program 4

Write a Java program to demonstrate BufferedReader(I/O Streams)

Problem Definition

Reading the data from the user.

Problem Description
BufferedReader class is used to read the data from the user as well as from the file.

BufferedReader improves performance by buffering input.

Syntax for Creating Object:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Pseudocode
import the package java.util.*

import java.io.*

Class BuffEx

{

Public static void main(String args[]) throws Exception{

Declare 2 variables n1, n2

Create BufferedReader object

read n1 using BufferedReader Object and convert to Integer

Read n2 using BufferedReader Object and convert to Integer

Display n1, n2

Display sum of n1 and n2

}

}

Problem Validation
Compile the program using the following command

Javac BuffEx.java

Execute the program using

Java BuffEx

Input:

10
20

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 7

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 8

Program 5

Write a Java program to demonstrate Arrays.

Problem Definition

Read data from the user and calculate the sum of array elements.

Problem Description

Making use of Scanner class to read the data from the user into the array and calculate

the sum of array elements. Use for loop to read the elements and find the sum.

Pseudocode
import the package java.util.*

Class ArrayDemo

{

Public static void main(String args[]) {

Declare size of array n

Create scanner object

Read n using Scanner Object

Create Array object with size n [an]

Read array vales using Scanner object in for loop

Calculate the sum of array elements

Display array elements and sum.

}

}

Problem Validation

Compile the program using the following command

Javac ArrayDemo.java

Execute the program using

Java ArrayDemo

Input:

Size 5

Elements: 6 9 12 56 90

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 9

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 10

Program 6

Write a Java program to find both the largest and smallest number in a list

of integers.

Problem Definition

Read data from the user in an array and find maximum and minimum of the elements.

Problem Description

Making use of Scanner class to read the data from the user into the array and find the

maximum and minimum of the elements. Use for loop to read the elements and if condition

to check the maximum and minimum of the elements.

Pseudocode

import java.util.*;

class MaxMin {

public static void main(String args[])

{

Declare n, Max, Min;

Scanner s = new Scanner(System.in);

Read size

Create array a[n]

Read the elements of the array using for loop

Max = Min = a[0];

for(int i=0;i<n;i++) {

if(Min > a[i])

Min = a[i];

if(Max < a[i])

Max = a[i];

}

Disply array elements, maximum and minimum values

}

}

Problem Validation
Compile the program using the following command

Javac MaxMin.java

Execute the program using

Java MaxMin

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 11

Input:

Size 5
Elements: 3 8 1 9 45

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 12

Program 7

Write a Java program that prints all real solutions to the quadratic

equation ax2 + bx + c = 0. Read in a, b, c and use the quadratic

formula.

Problem Definition

Find the roots of the Quadratic Equation ax2+bx+c=0.

Problem Description

Read the values of a, b, c values for the equation ax2+bx=c=0 using BufferedReader

object. Calculate DET value and bsed on the value of det, calculate and display the roots.

If the det is zero, Equation has single root. Root= -b/(2*a)

If the det is > zero, Equation has 2 different roots and they are (–b+sqrt(det))/(2*a)

and (–b-sqrt(det))/(2*a)

If the det is < zero, Roots are imaginary.

Pseudocode
public class Quadratic
{

public static void main(String args[])

{

Declare a,b,c,r1,r2;

Scanner s = new Scanner(System.in);

Read a,b,c values using s

Calculate Det value d = b*b-4*a*c

If(d==0)

{

}

if(d > 0)

{

Display ROOTS ARE REAL and EQUAL

Calculate r1=r2=-b/(2*a);

Display r1, r2

Display ROOTS ARE REAL and DISTINCT

r1=-b+Math.sqrt(d)/(2*a);

r2=-b-Math.sqrt(d)/(2*a);

Display r1, r2

} else

Display Roots are Imaginary

}

}

Problem Validation
Compile the program using the following command

Javac Quadratic.java

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 13

Execute the program using

Java Quadratic

Input:

Output:

a=1

b=-2

c=1

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 14

Program 8

Write a Java program that uses both recursive and non recursive

functions to print the nth value in the Fibonacci sequence.

Problem Definition

Generate the Fibonacci series using both recursive and non-recursive.

Problem Description

The Fibonacci Sequence is the series of numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, .. The

next number is found by adding up the two numbers before it. The 2 is found by adding the

two numbers before it (1+1). Initial values in the series are taken as 0, 1.

The Rule is xn = xn-1 + xn-2

Pseudocode
a) Non- Recursive

import java.util.*;

public class Fibn

{

public static void main(String args[])

{

Declare integers f1=0,f2=1,n,i,f3;

Create Scanner Object. Scanner s = new Scanner(System.in);

Read the size of the series n

Display first 2 numbers in the series

for(i=0;i<n-2;i++)

{

Add f1, f2 to get f3

Display f3

f1=f2;

f2=f3;

}

}

}

Problem Validation
Compile the program using the following command

Javac Fibn.java

Execute the program using

Java Fibn

Input:

Size = 8

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 15

Output:

b) Recursive

import java.util.*;

public class Fibrn

{

public static void main(String args[])

{

Declare integers n,i,f3;

Create Scanner Object. Scanner s = new Scanner(System.in);

Read the size of the series n

for(i=0;i<n;i++)

{

Call function fib(i)

Display f3

}

}

Static fib(int d)

{

if(d==0)

return 0;

else if(d==1)

return 1;

else

return((d-1)+(d-2));

}

}

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 16

Problem Validation
Compile the program using the following command

Javac Fibrn.java

Execute the program using

Java Fibrn

Input:

Output:

Size = 7

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 17

Program 9

Write a Java Program that reads a line of integers, and then displays

each integer, and the sum of all the integers

Problem Definition

Reading the data from the user in the form of string. Convert string into numbers and

find the sum of the numbers.

Problem Description

Use the StringTokenizer class to convert String into list of numbers and find the sum after

conversion. StringTokenizer uses the following methods for conversion and read token by

token.

Object Creation:

StringTokenizer st = new StringTokenizer(String);

Methods:

hasMoreTokens()

nextToken()

Pseudocode
import java.io.*;

import java.util.*;

public class StringToken

{

public static void main(String args[]) throws IOException

{

Create BufferedReader Object br as follows.

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

Declare i, n, sum=0;

Read String s

Convert string into tokens as StringTokenizer st = new StringTokenizer(s);

while(st.hasMoreTokens())

{

Take the token n and convert to integer

Display n value

Add n to sum

}

Display sum

}

}

Problem Validation
Compile the program using the following command

Javac StringToken.java

Execute the program using

Java StringToken

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 18

Input:

Output:

5 6 9 12 46 20 39 48 56

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 19

Program 10

Write a Java program that checks whether a given string is

palindrome or not.

Problem Definition

Check whether the given String is Palindrome or not.

Problem Description
A Palindrome is a word, phrase, number, or other sequence of characters which reads the

same backward or forward.

Here we are checking related to Strings. First Read the string and reverse it. Compare both

the strings and finally display whether the given string is palindrome or not.

Pseudocode
import java.util.*;

public class StrPalin{

public static void main(String[] args) {

Declare Str, revstr;

Create Scanner Object. Scanner in = new Scanner(System.in);

Read String using in.

Reverse the string using for loop.

for(int i=str.length()-1;i>=0;--i){

revstr +=str.charAt(i);

}

Display revstr.

Check whether str and revstr are quual or not. If equal

Display The string is Palindrome

else

Display The string is not Palindrome

}

}

Problem Validation
Compile the program using the following command

Javac StrPalin.java

Execute the program using

Java StrPalin

Input:

Str = MADAM

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 20

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 21

Program 11

Write a Java program to sort a list of names in ascending order.

Problem Definition

Sort the given list of names in Ascending order.

Problem Description

Read list of Strings and compare each string to put it in the alphabetical order.

Pseudocode
import java.io.*;

class SortStr

{

public static void main(String args[])throws IOException

{

Create BufferedReafer Object.

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

Read the number of Strings to be sorted. n

Create String Array x with size n;

for(int i=0;i<n;i++)

{

Read all the strings in x[i]

}

Create an empty string s

for(int i=0;i<n;i++)

{

for(int j=0;j<n;j++)

{

Compare the characters in 2 strings and swap if the first string is bigger.

if(x[i].compareTo(x[j])<0)

{

s=x[i];

x[i]=x[j];

x[j]=s;

}

}

}

for(int i=0;i<n;i++)

{

Display the strings after sorting

}

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 22

}

}

Problem Validation
Compile the program using the following command

Javac SortStr.java

Execute the program using

Java SortStr

Input:

Output:

Size = 5

The strings are Sachin, Dhoni, Kohli, Sikhar, Jadeja

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 23

Program 12

A program to illustrate the concept of class with Constructor

overloading,

Problem Definition

Constructor overloading demonstration.

Problem Description
Constructors are used to assign initial values to instance variables of the class. A

default constructor with no arguments will be called automatically by the Java Virtual

Machine (JVM). Constructor is always called by new operator. Constructors are declared just

like as we declare methods, except that the constructor doesn‘t have any return type.

Constructor can be overloaded provided they should have different arguments because JVM

differentiates constructors on the basis of arguments passed in the constructor.

Pseudocode
Create class Rectangle{

Declare l, b;

Declare p, q;

public Rectangle(int x, int y){

assign x to l;

assign y to b;

}

public int first(){

return(l * b);

}

public Rectangle(int x){

assign x to l, b;

}

public int second(){

return(l * b);

}

public Rectangle(float x){

assign x to p, q;

}

public float third(){

return(p * q);

}

public Rectangle(float x, float y){

assign x to p;

assign y to q;

}

public float fourth(){

return(p * q);

}

}

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 24

class ConsOverload

{

public static void main(String args[])

{

Create Rectangle Class Object retangle1=new Rectangle(2,4);

Call first method using rectangle1 and store result r1

Display area r1

Create Rectangle Class Object rectangle2=new Rectangle(5);

Call second method using rectangle2 and store result r2

Display area r2

Create Rectangle Class Object rectangle3=new Rectangle(2.0f);

Call third method using rectangle2 and store result r3

Display area r3

Create Rectangle Class Object rectangle4=new Rectangle(3.0f,2.0f);

Call forth method using rectangle4 and store result r4

Display area r4

}

}

Problem Validation
Compile the program using the following command

Javac ConsOverload.java

Execute the program using

Java ConsOverload

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 25

Program 13

A program to illustrate the concept of class with Method overloading

Problem Definition

Method overloading demonstration.

Problem Description
In Java it is possible to define two or more methods within the same class that share the

same name, as long as their parameter declarations are different. When this is the case, the

methods are said to be overloaded, and the process is referred to as method overloading.

Method overloading is one of the ways that Java implements polymorphism.

Pseudocode
Declare class OverloadDemo {

void test() {

display No parameters

}

void test(int a) {

Display the parameter a value

}

void test(int a, int b) {

Display the parameters a, b values

}

double test(double a) {

Display the parameter a value

return a*a;

}

}

class MethodOverload {

public static void main(String args[]) {

Create Object for OverloadDemo ob = new OverloadDemo();

Call ob.test();

Call ob.test(10);

Call ob.test(10, 20);

Declare result and store result = ob.test(123.25);

Display result

}

}

Problem Validation
Compile the program using the following command

Javac OverloadDemo.java

Execute the program using

Java OverloadDemo

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 26

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 27

Program 14

A program to illustrate the concept of Dynamic Polymorphism.

Problem Definition

Demonstration of Dynamic or runtime Polymorphism.

Problem Description
Dynamic method dispatch is the mechanism by which a call to an overridden method is

resolved at run time, rather than compile time. Dynamic method dispatch is important

because this is how Java implements run-time polymorphism. Let's begin by restating an

important principle: a superclass reference variable can refer to a subclass object.

Java uses this fact to resolve calls to overridden methods at run time. Here is how. When

an overridden method is called through a superclass reference, Java determines which

version of that method to execute based upon the type of the object being referred to at

the time the call occurs. Thus, this determination is made at run time. When different

types of objects are referred to, different versions of an overridden method will be called.

Pseudocode
Declare class Figure {

Declare dim1, dim2;

Figure(double a, double b) {

Assign a to dim1, b to dim2

}

double area() {

Display Area for Figure is undefined

return 0;

}

}

Declare class Rectangle extends Figure {

Rectangle(double a, double b) {

Call super class constructor by passing a, b

}

double area() {

Display Inside Area for Rectangle

Calculate dim1 * dim2 and return the result

}

}

Declare class Triangle extends Figure {

Triangle(double a, double b) {

Call super class constructor by passing a, b

}

double area() {

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 28

Display Inside Area for Triangle

Calculate (dim1 * dim2)/2 and return the result

}

}

Declare class FindAreas {

public static void main(String args[]) {

Create Object for Figure f = new Figure(10, 10);

Create Object for Rectangle r = new Rectangle(9, 5);

Create Object for Triangle t = new Triangle(10, 8);

Create a reference for Figure figref;

Assign r to reference figref = r;

Display area

Assign t to reference figref = t;

Display area

Assign f to reference figref = f;

Display area

}

}

Problem Validation
Compile the program using the following command

Javac FindAreas.java

Execute the program using

Java FindAreas

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 29

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 30

Program 15

A program to illustrate the concept of Single inheritance

Problem Definition

Demonstration of Single Inheritance.

Problem Description
The concept of inheritance is used to make the things from general to more specific e.g.

When we hear the word vehicle then we got an image in our mind that it moves from one

place to another place it is used for traveling or carrying goods but the word vehicle does

not specify whether it is two or three or four wheeler because it is a general word.

When a subclass is derived simply from it‘s parent class then this mechanism is known as

simple inheritance. In case of simple inheritance there is only a sub class and it's parent

class. It is also called single inheritance or one level inheritance.

Pseudocode
Declare class Box {

Declare width, height, depth

Box(Box ob) {

Assign ob.width to width

height = ob.height;

depth = ob.depth;

}

Box(double w, double h, double d) {

Assign w to width

Assign h to height

Assign d to depth

}

Box() {

Assign width = height = depth = -1

}

Box(double len) {

Assign len to width, height, depth

}

double volume() {

return width * height * depth;

}

}

class BoxWeight extends Box {

double weight;

BoxWeight(double w, double h, double d, double m) {

Call the super class constructor by passing parameters w,h,d

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 31

Assign m to weight

}

}

class SingleInh {

public static void main(String args[]) {

Create Object for BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

Create Object for BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

Call volume() on mybox1 object and store result in vol

Display volume vol

Display weight on mybox1

Call volume() on mybox2 object and store result in vol

Display volume vol

Display weight on mybox2

}

}

Problem Validation
Compile the program using the following command

Javac SingleInh.java

Execute the program using

Java SingleInh

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 32

Program 16

A program to illustrate the concept of Multi level inheritance

Problem Definition

Demonstration of Multilevel Inheritance

Problem Description
It is the enhancement of the concept of inheritance. When a subclass is derived from a

derived class then this mechanism is known as the multilevel inheritance. The derived

class is called the subclass or child class for it's parent class and this parent class works as

the child class for it's just above (parent) class. Multilevel inheritance can go up to any

number of level.

Pseudocode
Declare class Box {

Declare width, height, depth

Box(Box ob) {

Assign ob.width to width

height = ob.height;

depth = ob.depth;

}

Box(double w, double h, double d) {

Assign w to width

Assign h to height

Assign d to depth

}

Box() {

Assign width = height = depth = -1

}

Box(double len) {

Assign len to width, height, depth

}

double volume() {

return width * height * depth;

}

}

class BoxWeight extends Box {

double weight;

BoxWeight(double w, double h, double d, double m) {

Call the super class constructor by passing parameters w,h,d

Assign m to weight

}

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 33

}

Declare class Shipment extends BoxWeight {

double cost;

Shipment(Shipment ob) {

Call super class constructor by passing object ob

Assign object cost value to cost

}

Shipment(double w, double h, double d,double m, double c) {

Call super class constructor by passing w, h, d, m

Assign c to cost

}

Shipment() {

Call super class default constructor

Assign cost = -1;

}

Shipment(double len, double m, double c) {

Call super class constructor by passing len, m

Assign c to cost

}

}

class MultiInh {

public static void main(String args[]) {

Create Object for Shipment shipment1 = new Shipment(10, 20, 15, 10, 3.41);

Create Object for Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28);

Call volume method on shipment1 and store result in vol

Display vol

Display weight on shipment1

Display cost on shipment1

Call volume method on shipment2 and store result in vol

Display vol

Display weight on shipment2

Display cost on shipment2

}

}

Problem Validation
Compile the program using the following command

Javac MultiInh.java

Execute the program using

Java MultiInh

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 34

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 35

Program 17

A program to illustrate user defined packages.

Problem Definition

Creating and using Packages.

Problem Description
Packages in Java is a mechanism to encapsulate a group of classes, interfaces and sub

packages. Some of the existing packages in Java are:

 java.lang - bundles the fundamental classes

 java.io - classes for input , output functions are bundled in this package

Programmers can define their own packages to bundle group of classes/interfaces, etc.

It is a good practice to group related classes implemented by you so that a programmer can

easily determine that the classes, interfaces, enumerations, annotations are related.

Steps for Creating Package:

1. Create a package with a .class file.
2. set the classpath from the directory from which you would like to access. It may be in

a different drive and directory. Let us call it as a target directory.

3. Write a program and use the file from the package.

Pseudocode
Creating the Package.

package animals;

public interface Animal {

declare eat() as public

declare travel() as public

}

Importing Package

Import animals.*;
public class MammalInt implements Animal{

Implement eat()

Implement travel()

public int noOfLegs(){

return 0;

}

public static void main(String args[]){

Create object for the class MammalInt m = new MammalInt();

Call eat()

Call travel()

}

}

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 36

Problem Validation
Compile the program using the following command

Javac –d . Animal.java

Javac MammalInt.java

Execute the program using

Java MammalInt

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 37

Program 18

A program to illustrate the concept of Abstract Classes.

Problem Definition

Demonstration on creation of Abstract Class.

Problem Description
An abstract class is a class that is declared by using the abstract keyword. It may or may

not have abstract methods. Abstract classes cannot be instantiated, but they can be

extended into sub-classes.

Java provides a special type of class called an abstract class, which helps us to organize

our classes based on common methods. An abstract class lets you put the common

method names in one abstract class without having to write the actual implementation

code.

An abstract class can be extended into sub-classes; these sub-classes usually provide

implementations for all of the abstract methods.

 Abstract class contains abstract methods.

 Program can't instantiate an abstract class.

 Abstract classes contain mixture of non-abstract and abstract methods.

 If any class contains abstract methods then it must implements all the abstract

methods of the abstract class.

Pseudocode
Create abstract class Figure {

declare dim1, dim2

Figure(double a, double b) {

Assign a to dim1

Assign b to dim2

}

Declare abstract double area();

}

class Rectangle extends Figure {

Rectangle(double a, double b) {

Class the super class constructor by passing the parameters a, b

}

double area() {

Display Inside Area for Rectangle

Calculate and return dim1 * dim2;

}

}

class Triangle extends Figure {

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 38

Triangle(double a, double b) {

Class the super class constructor by passing the parameters a, b

}

double area() {

Display Inside Area for Triangle

Calculate and return dim1 * dim2/2;

}

}

class AbstractAreas {

public static void main(String args[]) {

Create Object for the class Rectangle r = new Rectangle(9, 5);

Create Object for the class Triangle t = new Triangle(10, 8);

Create a reference for Figure figref; // this is OK, no object is created

Assign r to figref

Call area() using figref and display the result

Assigntr to figref

Call area() using figref and display the result

}

}

Problem Validation
Compile the program using the following command

Javac AbstractAreas.java

Execute the program using

Java AbstractAreas

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 39

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 40

Program 19

A program using Interfaces.

Problem Definition

Demonstration of Interface.

Problem Description
Using the keyword interface, you can fully abstract a class‘ interface from its

implementation. That is, using interface, you can specify what a class must do, but not

how it does it. Interfaces are syntactically similar to classes, but they lack instance

variables, and their methods are declared without any body. To implement an interface, a

class must create the complete set of methods defined by the interface. However, each

class is free to determine the details of its own implementation. By providing the

interface keyword, Java allows you to fully utilize the ―one interface, multiple methods‖

aspect of polymorphism.

Implementation of Stack program using Interfaces.

Pseudocode
Declare an Interface

Declare interface printable{

Declare the method print()

}

Create the class and call the interface.

class IntDemo implements printable{

Implement the print method

public static void main(String args[]){

Create object for Class IntDemo obj = new IntDemo();

Call Print method

}

}

Problem Validation

Compile the program using the following command

Javac IntDemo .java

Execute the program using

Java IntDemo

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 41

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 42

Program 20

Write a Java program to implement the concept of exception handling

Problem Definition

Java program to implement the concept of exceptional handling.

Problem Description
The exception handling in java is one of the powerful mechanism to handle the runtime

errors so that normal flow of the application can be maintained.

In java, exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime. Exception Handling is a mechanism to handle runtime errors

such as ClassNotFound, IO, SQL, Remote etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.

Exception normally disrupts the normal flow of the application that is why we use exception

handling.

Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is considered

as unchecked exception. There are three types of exceptions:

 Checked Exception

 Unchecked Exception

 Error

Difference between checked and unchecked exceptions

1) Checked Exception

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 43

The classes that extend Throwable class except RuntimeException and Error are known as

checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at

compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Unchecked exceptions are not checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Pseudocode
1. Create a class and initialize class members and methods.

2. Read input values a,b,c

3. Compute d=a/(b-c) in try block

4. Provide catch(Exception e) block

5. Display ―Divide by zero error‖ message

6. End.

Problem Validation
Compile the program using the following command

Javac ExceptionChk.java

Execute the program using

Java ExceptionChk

Input: a=10,b=5,c=5

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 44

Program 21

A program to illustrate the concept of threading using Thread Class

Problem Definition

A program to illustrate concept of threading using thread class.

Problem Description

Java is a multi threaded programming language which means we can develop multi

threaded program using Java. A multi threaded program contains two or more parts that can

run concurrently and each part can handle different task at the same time making optimal

use of the available resources especially when your computer has multiple CPUs.

By definition multitasking is when multiple processes share common processing resources

such as a CPU. Multi threading extends the idea of multitasking into applications where you

can subdivide specific operations within a single application into individual threads. Each of

the threads can run in parallel. The OS divides processing time not only among different

applications, but also among each thread within an application.

Create Thread by Extending Thread Class:

The second way to create a thread is to create a new class that extendsThread class using the

following two simple steps. This approach provides more flexibility in handling multiple

threads created using available methods in Thread class.

Step 1

You will need to override run() method available in Thread class. This method provides

entry point for the thread and you will put you complete business logic inside this method.

Following is simple syntax of run() method:

public void run()

Step 2

Once Thread object is created, you can start it by calling start() method, which executes a

call to run() method. Following is simple syntax of start() method:

void start();

Pseudocode
1. Create a class and extend ―Thread ‖ class

2. Now override the ―public void run()‖ method and write the logic there (This is the method

which will be executed when this thread is started)

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 45

That‘s it, now start this thread as given below

1. Create an object of the above class

2. Call the method ―start‖ on the object created. Now our thread will start its execution in

parallel

Problem Validation
Compile the program using the following command

Javac FileName.java

Execute the program using

Java MainClassName

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 46

Program 22

A program to illustrate the concept of threading using runnable

Interface.

Problem Definition

A program to illustrate the concept of threading using runnable interface.

Problem Description

Create Thread by Implementing Runnable Interface:

If your class is intended to be executed as a thread then you can achieve this by

implementing Runnable interface. You will need to follow three basic steps:

Step 1:

As a first step you need to implement a run() method provided by Runnableinterface. This

method provides entry point for the thread and you will put you complete business logic

inside this method. Following is simple syntax of run() method:

public void run()

Step 2:

At second step you will instantiate a Thread object using the following constructor:

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements the Runnableinterface

and threadName is the name given to the new thread.

Step 3

Once Thread object is created, you can start it by calling start() method, which executes a

call to run() method. Following is simple syntax of start() method:

void start();

Pseudocode
1. Create a class implement ―Runnable‖ interface.

2. Now override the ―public void run()‖ method and write the logic there (This is the method

which will be executed when this thread is started).

That‘s it, now start this thread as given below

1. Create an object of the above class

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 47

2. Allocate a thread object for our thread

3. Call the method ―start‖ on the allocated thread object.

Problem Validation
Compile the program using the following command

Javac FileName.java

Execute the program using

Java MainClassName

Input:

Output:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 48

Program 23

A program to illustrate the concept of multi-threading that creates

three threads. First thread displays “Good Morning” every one

second, the second thread displays “Hello” every two seconds and the

third thread displays “Welcome” every three seconds.

Problem Definition

Program to illustrate the concept of multithreading that creates three threads. First thread

displays ―Good Morning‖ every second, the second thread displays ―Hello‖ every two

seconds and the third thread displays ―Welcome‖ every three seconds.

Problem Description

Create three separate threads that will calculate the average, minimum and maximum of a

series of numbers that is passed to the program. The values will be stored globally in the

program. The three threads will return the three values respectively to the main program

where it will be output to the user.

Pseudocode
1. Create a class and initialize class members and methods.

2. Read input values

3. Using threads implement 3 threads methods to display messages like ―GOOD

MORNING‖, ― HELLO‖, ―WELCOME‖ in specified time intervals.

4. Display output.

5. End.

Problem Validation
Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

No Input

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 49

Output:

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 50

Program 24

A program to illustrate the concept of Thread synchronization.

Problem Definition

A program to illustrate the concept of Thread synchronization.

Problem Description
Synchronization in java is the capability to control the access of multiple threads to any

shared resource. Java Synchronization is better option where we want to allow only one

thread to access the shared resource. The synchronization is mainly used to

To prevent thread interference.

To prevent consistency problem.

Types of Synchronization

There are two types of synchronization

 Process Synchronization

 Thread Synchronization

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-thread

communication.

Mutual Exclusive

Synchronized method.

Synchronized block.

static synchronization.

Cooperation (Inter-thread communication in java)

Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while sharing data.

This can be done by three ways in java:

by synchronized method

by synchronized block

by static synchronization

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every object

has an lock associated with it. By convention, a thread that needs consistent access to an

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 51

object's fields has to acquire the object's lock before accessing them, and then release the lock

when it's done with them.

Pseudocode
//example of java synchronized method

o Create a class with a synchronized

o Create one thread and pass the shared class object.

o Create second thread and pass the shared class object.

o Create a main tester class and run both the threads

Problem Validation
Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

Output:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 52

JAVA PROGRAMMING LAB MANUAL

Program 25

Write a Java program to implement serialization concept

Problem Definition

Java program to implement serialization concept

Problem Description
Serialization is a process by which we can store the state of an object into any storage

medium. We can store the state of the object into a file, into a database table etc.

Deserialization is the opposite process of serialization where we retrieve the object back from

the storage medium.

Eg1: Assume you have a Java bean object and its variables are having some values. Now you

want to store this object into a file or into a database table. This can be achieved using

serialization. Now you can retrieve this object again from the file or database at any point of

time when you need it. This can be achieved using deserialization

Pseudocode
1. Create an ―Emloyee‖ Class which has two member variables ―employeeNumber‖ and

―employeeName‖.

2. Then create an object of ―Emloyee‖ Class, say ―employee1‖ and set values for the member

variables ―employeeNumber‖ and ―employeeName‖.

3. Serialize this employee object ―employee1‖ and store it into a file

4.Retrieve the object saved into the file

Problem Validation
Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

No Input

Output: Objects are stored from the class into the file.

INFORMATION TECHNOLOGY DEPARTMENT 53

JAVA PROGRAMMING LAB MANUAL

Program 26

Write a Java program that reads a file name from the user, and then

displays information about whether the file exists, whether the file is

readable,

Problem Definition

Reading the data from the user.

Problem Description

There is a useful class in Java called File that we can use for checking some properties

of the files. What you usually have to do is to declare an object of type File whose

constructor accepts a file name, and apply to it some of the methods defined for that class.

Once you know the properties of the file (it exists and it can be read, for example), you

declare a stream of one of the types explained in the previous sections to read from and to

write to. Some methods that you can apply to a File object are:

• public boolean exists() Checks whether a file exists with the name associated to the

object when it was created.

• public boolean canRead() Checks whether the program can read from the file.

• public boolean canWrite() Checks whether the program can write to the file.

• public boolean delete() Tries to delete the file and returns the result of the operation

(success or fail).

• public long length() Returns the length in bytes of the file.

• public String getName() Returns the name of the file.

• public String getPath() Returns the path where the file is located. Modify the

program that asks the user the temperatures of the week and that saves them in a file. Check

if the file that the user indicates already exists. If so, ask the user if she/he wants to overwrite

it. If her/his answer is negative, then the program ends.

Pseudocode
1. Start the program, import the packages.

2. create an object of ‗fi‘ using fileinputstream class

3. if check the file exit then

print ‗file is exit‘

else

print ‗file does not exit

4. Print the number of bytes of given files is using fi.length() function

INFORMATION TECHNOLOGY DEPARTMENT 54

JAVA PROGRAMMING LAB MANUAL

5. End

Problem Validation
Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

Output:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 55

JAVA PROGRAMMING LAB MANUAL

Program 27

Write a Java program that reads a file and displays the file on the screen,

with a line number before each line.

Problem Definition

Java program that reads a file and displays the file on the screen with a line number before

each line.

Problem Description

Java has a concept of working with streams of data. You can say that a Java program reads

sequences of bytes from an input stream (or writes into an output stream): byte after byte,

character after character, primitive after primitive. Accordingly, Java defines various types of

classes supporting streams, for example InputStream or OutputStream. There are classes

specifically meant for reading character streams such as Reader and Writer.

Before an application can use a data file, it must open the file. A Java application opens a file

by creating an object and associating a stream of bytes with that object. Similarly, when you

finish using a file, the program should close the file—that is, make it no longer available to

your application.

To read file content line by line use BufferedReader object. By calling readLine()

method you can get file content line by line. readLine() returns one line at each iteration, we

have to iterate it till it returns null.

Pseudocode
1. Start the program, import the packages.

2. create an object of ‗fi‘ using fileinputstream class

3. compute count=0

4. repeate ‗4‘ until file is empty

5. if the new line is arrived then

6. printf counter,count++

7. End

Problem Validation
Compile the program using the following command

INFORMATION TECHNOLOGY DEPARTMENT 56

JAVA PROGRAMMING LAB MANUAL

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

Output:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 57

JAVA PROGRAMMING LAB MANUAL

Program 28

Write a Java program that displays the number of characters, lines and

words in a text file.

Problem Definition

Java program to display the number of characters, lines and words in a text file.

Problem Description

In Java, FileInputStream and FileOutputStream classes are used to read and write data

in file. In another words, they are used for file handling in java. Java FileOutputStream is an

output stream for writing data to a file.If you have to write primitive values then use

FileOutputStream.Instead, for character-oriented data, prefer FileWriter.But you can write

byte-oriented as well as character-oriented data.

Pseudocode
1. Start the program, import the packages.

2. create an object of ‗fi‘ using fileinputstream class

3. compute count=0,word=0,line=1,space=0

4. repeate ‗4‘ until file is empty

5. if fi.read() equal to new line then

increment line

else

fi.read() equal to space then

increment word

else

increment char

6. print word,line,char

7. End

Problem Validation
Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

Input is the name of a text file.

INFORMATION TECHNOLOGY DEPARTMENT 58

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 59

JAVA PROGRAMMING LAB MANUAL

Program 29

Write a Java program to illustrate collection classes like

(i) Array List, (ii) Iterator, (iii)Hash set.

Problem Definition

Java program to illustrate collection classes like (i) Array List, (ii) Iterator, (iii)Hash set.

Problem Description
Arraylist

Java ArrayList class uses a dynamic array for storing the elements.It extends AbstractList

class and implements List interface.Java ArrayList class can contain duplicate elements.Java

ArrayList class maintains insertion order.Java ArrayList class is non synchronized.Java

ArrayList allows random access because array works at the index basis.In Java ArrayList

class, manipulation is slow because a lot of shifting needs to be occurred if any element is

removed from the array list

Iterator

List Interface is the subinterface of Collection.It contains methods to insert and delete

elements in index basis.It is a factory of ListIterator interface.

Commonly used methods of List Interface:

public void add(int index,Object element);

public boolean addAll(int index,Collection c);

public object get(int Index position);

public object set(int index,Object element);

public object remove(int index);

public ListIterator listIterator();

public ListIterator listIterator(int i);

Hashset

Java HashSet class uses hashtable to store the elements.It extends AbstractSet class and

implements Set interface. It contains unique elements only.

Difference between List and Set:

List can contain duplicate elements whereas Set contains unique elements only.

Hierarchy of HashSet class:

INFORMATION TECHNOLOGY DEPARTMENT 60

JAVA PROGRAMMING LAB MANUAL

Pseudocode
c) ArrayList

1. import java.util.* package
2. create a class

3. ArrayList al=new ArrayList();

4. add(100) to arraylist;

5. add("abc") to arraylist;

6. add(10.84) to arraylist;

7. add(2,5) to arraylist;

8. remove(10.84) from araylist;

9. print the "Array list‖

10. end

d) Iterator

1. import java.util.* package
2. create a class

3. ArrayList al=new ArrayList();

4. add(100) to arraylist;

5. add("abc") to arraylist;

6. add(10.84) to arraylist;

7. add(2,5) to arraylist;

8. remove(10.84) from arraylist;

9. use Iterator it=al.iterator() to move ahead in the list;

10. print "List";

11. use ListIterator lit=al.listIterator() to move ahead in list;

12. move until no element found (lit.hasNext())

13. Add ―+‖ to the existing element using set() method;

14. Print "Modified List: "

15. Print "Modified list backwards";

16. Move until first element using hasPrevious() method

17. Print the element

18. end

e) Hashset

1. import java.util.* package
2. create a class

INFORMATION TECHNOLOGY DEPARTMENT 61

JAVA PROGRAMMING LAB MANUAL

3. Create HashSet hs=new HashSet();

4. Add (244) to hashset;

5. Add (21) to hashset;

6. Add ("Xyz") to hashset;

7. remove(21) from hashset;

8. print the Hashset hs;

9. end

Problem Validation

Compile the program using the following command

Javac <Programname.java>

Execute the program using

Java <MainClassName>

Input:

Output:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 62

JAVA PROGRAMMING LAB MANUAL

Program 30

Write a Java program for handling Key events

Problem Definition

Java program to handle keyboard events.

Problem Description

On entering the character the Key event is generated.There are three types of key events

which are represented by the integer constants. These key events are following

KEY_PRESSED

KEY_RELASED

KEY_TYPED

The class which processes the KeyEvent should implement this interface. The object of that

class must be registered with a component. The object can be registered using the

addKeyListener() method.

Pseudocode
o Import the packages of applet, awt, awt.event.

o Create a classes, methods.

o Keyboard events like keyTyped, key Pressed, keyReleased.

o g.drawString() application of Graphical User Interface.

o The keyboard event arguments execution.

o Printing in the separated Applet viewer window.

o End

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

appletviewer <Filename.java>

Input:

Type keys like up arrow and down arrow or any character or number

INFORMATION TECHNOLOGY DEPARTMENT 63

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 64

JAVA PROGRAMMING LAB MANUAL

Program 31

Write a Java program for handling Mouse events

Problem Definition

Develop a Java Program for handling Mouse Events.

Problem Description

Pseudocode

1. Import the packages of applet, awt, awt.event.

2. Create a classes, methods.

3. Mouse moments, mouse Clicked, mouse Pressed, mouse Released, mouse Entered,

mouse Exited, mouse Dragged events args.

4. g.drawString() application of Graphical User Interface.

5. while rotating mouse event args.

6. The mouse event arguments execution.

7. Printing in the separated Applet viewer window.

8. End

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

appletviewer <Filename.java>

Input:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 65

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 66

JAVA PROGRAMMING LAB MANUAL

Program 32

Develop an applet that displays a simple message

Problem Definition

Develop an applet that displays a simple message

Problem Description

An applet is a Java program that runs in a Web browser. An applet can be a fully functional

Java application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java application,

including the following:

 An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not define

main().

 Applets are designed to be embedded within an HTML page.

 When a user views an HTML page that contains an applet, the code for the applet is

downloaded to the user's machine.

 A JVM is required to view an applet. The JVM can be either a plug-in of the Web

browser or a separate runtime environment.

 The JVM on the user's machine creates an instance of the applet class and invokes

various methods during the applet's lifetime.

 Applets have strict security rules.

Pseudocode

1. import java.applet.Applet, java.awt.* packages

2. Include the /*<Applet code="Simple" height=500 width=500> </Applet>*/

3. Create class Simple extends Applet

4. Declare void paint(Graphics g)

5. g.drawString("Hello World",10,20);

6. End

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

appletviewer <Filename.java>

INFORMATION TECHNOLOGY DEPARTMENT 67

JAVA PROGRAMMING LAB MANUAL

Input:

Output:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 68

JAVA PROGRAMMING LAB MANUAL

Program 33

Develop an applet that displays lines, rectangles, ovals, square etc.

Problem Definition

Develop an applet that displays lines, rectangles, ovals, square etc.

Problem Description

Pseudocode

1. Import the packages of applet,awt,awt.event.

2. Create a classes: public void paint(Graphics g).

3. Assume the values of string, color and shape.

4. g.drawString() application of Graphical User Interface.

5. Printing in the separated Applet viewer window.

6. End

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

appletviewer <Filename.java>

Input:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 69

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 70

JAVA PROGRAMMING LAB MANUAL

Program 34

Java program to illustrate GUI Components using AWT.

Problem Definition

Java applet to demonstrate the various GUI components in AWT package.

Problem Description
Java Graphics APIs - AWT and Swing - provide a huge set of reusable GUI components,

such as button, text field, label, choice, panel and frame for building GUI applications.

AWT is huge! It consists of 12 packages (Swing is even bigger, with 18 packages as of JDK

1.8). Fortunately, only 2 packages - java.awt and java.awt.event - are commonly-used.

The java.awt package contains the core AWT graphics classes:

 GUI Component classes (such as Button, TextField, and Label),

 GUI Container classes (such as Frame, Panel, Dialog and ScrollPane),

 Layout managers (such as FlowLayout, BorderLayout and GridLayout),

 Custom graphics classes (such as Graphics, Color and Font).

The java.awt.event package supports event handling:

 Event classes (such as ActionEvent, MouseEvent, KeyEvent and WindowEvent),

 Event Listener Interfaces (such

as ActionListener, MouseListener, KeyListener and WindowListener),

Pseudocode

<import relevant packages>

Add the applet code

/* <applet code="" height=600 width=600>

</applet> */

Declare class GuiWindow1 extends Applet implements ActionListener,ItemListener

{
Declare msg,s1,s2,s3,s4,s5,s6 as String;

Declare ent,cnl as Button;

Declare fname,lname as TextField;

Declare addr as TextArea;

Declare n1,l1,a1,gend,qal,jbl as Label;

Declare c1,c2 as Checkbox;

Declare cbg as CheckboxGroup;

Declare quali,job as Choice;

public void init()

{

setLayout(new FlowLayout(FlowLayout.LEFT,40,20));

msg=" ";

s1="";

INFORMATION TECHNOLOGY DEPARTMENT 71

JAVA PROGRAMMING LAB MANUAL

s2="";

s3="";

s4="";

s5="";

s6="";

create Label("First Name:",Label.RIGHT);

add TextField(12);

create Label("Last Name:",Label.RIGHT);

add TextField(12);

create new Label("Address:",Label.RIGHT);

add TextArea(5,20);

create Label("Gender:",Label.RIGHT);

add(gend);

create CheckboxGroup();

create Checkbox("MALE",true,cbg);

create Checkbox("FEMALE",false,cbg);

add(c1);

add(c2);

c1.addItemListener(this);

c2.addItemListener(this);

create Label("Qualification:",Label.RIGHT);

add(qal);

quali=new Choice();

quali.add("SSC");

quali.add("Inter");

quali.add("Under Graduate");

quali.add("Graduate");

quali.add("Post Graduate");

add(quali);

quali.addItemListener(this);

create Label("Occupation:",Label.RIGHT);

add(jbl);

job=new Choice();

job.add("Engineer(Student)");

job.add("Software Engineer");

job.add("Lawyer");

job.add("Medical Profestional");

job.add("Self Employed");

job.add("Lecturer");

job.add("Others");

add(job);

job.addItemListener(this);

create Button("Enter");

add(ent);

ent.addActionListener(this);

create Button("Cancel");

INFORMATION TECHNOLOGY DEPARTMENT 72

JAVA PROGRAMMING LAB MANUAL

add(cnl);

cnl.addActionListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

public void actionPerformed(ActionEvent ae)

{

repaint();

String arg=ae.getActionCommand();

if(arg.equals("Enter"))

s1+=fname.getText();

s2+=lname.getText();

s3+=addr.getText();

s4+=cbg.getSelectedCheckbox().getLabel();

s5+=quali.getSelectedItem();

s6+=job.getSelectedItem();

else

fname.setText("");

lname.setText("");

addr.setText("");

s1=s2=s3=s4=s5=s6="";

cbg.setSelectedCheckbox(c1);

}

public void paint(Graphics g)

{

}

End the class

Display (msg);

Display ("First Name:"+s1,20,410);

Display ("Last Name:"+s2,20,430);

Display ("Address:"+s3,20,450);

Display ("Gender:"+s4,20,470);

Display ("Qualification:"+s6,20,510);

using g.drawString

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

appletviewer <Filename.java>

Input:

Input is given in the form at the GUI window

INFORMATION TECHNOLOGY DEPARTMENT 73

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 74

JAVA PROGRAMMING LAB MANUAL

Program 35

Java program to change a specific character in a file.

Problem Definition

Java program to change a specific character in a file with a new character.

Problem Description
This method replaces each substring of this string that matches the given regular expression

with the given replacement.

String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string with

newChar.

String replaceAll(String regex, String replacement

Replaces each substring of this string that matches the given regular expression with the

given replacement.

Pseudocode

1. <import relevant packages>

2. Declare a class

3. Read a file name

4. Read every line of a file

5. Read the existing character in the file using Scanner object

6. Read the new character to be replaced using Scanner object

7. Use the method

8. replaceAll(old_char,new_char);

9. write the data to the file using FileWriter

10. End

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

Java <main_Class_Name>

Input:

Preexisting character in the file.

Character to be replaced

Output:

INFORMATION TECHNOLOGY DEPARTMENT 75

JAVA PROGRAMMING LAB MANUAL

INFORMATION TECHNOLOGY DEPARTMENT 76

JAVA PROGRAMMING LAB MANUAL

Program 36

Java program to implements producer consumer problem

Problem Definition

Java program to implements producer consumer problem using the concept of inter

thread communication.

Problem Description
Multithreading replaces event loop programming by dividing tasks into discrete,

logical units. Threads also provide a secondary benefit: they do away with polling. Polling is

usually implemented by a loop that is used to check some condition repeatedly. Once the

condition is true, appropriate action is taken. This wastes CPU time for example, consider the

classic queuing problem, where one thread is producing some data and another is consuming

it. To make the problem more interesting, suppose that the producer has to wait until the

consumer is finished before it generates more data. In a polling system, the consumer would

waste many CPU cycles while it waited for the producer to produce. Once the producer was

finished, it would start polling, wasting more CPU cycles waiting for the consumer to finish,

and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via the

methods:

• wait() tells the calling thread to give up the monitor and go to sleep until some other

thread enters the same monitor and calls notify().

• notify() wakes up a thread that called wait() on the same object.

• notifyAll() wakes up all the threads that called wait() on the same object. One of

the threads will be granted access.

Pseudocode
1. Create a class and initialize class members and methods.

2. Read input values

3. Implement 2 different threads for allocating the resources and consuming the

resources.

4. Provide inter thread communication between them to resolve the problem.

5. Display output.

6. End.

int itemCount = 0;

procedure producer() {

while (true) {

item = produceItem();

if (itemCount == BUFFER_SIZE) {

sleep();

}

INFORMATION TECHNOLOGY DEPARTMENT 77

JAVA PROGRAMMING LAB MANUAL

putItemIntoBuffer(item);

itemCount = itemCount + 1;

if (itemCount == 1) {

wakeup(consumer);

}

}

}

procedure consumer() {

while (true) {

if (itemCount == 0) {

sleep();

}

item = removeItemFromBuffer();

itemCount = itemCount - 1;

if (itemCount == BUFFER_SIZE - 1) {

wakeup(producer);

}

consumeItem(item);

}

}

Problem Validation
Compile the program using the following command

Javac <Filename.java>

Execute the program using

Java <main_Class_Name>

Input:

No Input

INFORMATION TECHNOLOGY DEPARTMENT 78

JAVA PROGRAMMING LAB MANUAL

Output:

INFORMATION TECHNOLOGY DEPARTMENT 79

JAVA PROGRAMMING LAB MANUAL

Annexure – I

List of programs according to O.U. curriculum

Code: BIT 282 JAVA PROGRAMMING LAB

Instruction 3 Periods per

week

Duration of University Examination 3 Hours

University Examination 50 Marks
Sessional 25 Marks

 Write a Java Program that reads a line of integers, and then displays each integer, and

the sum of all the integers (Use String Tokenizer class of java. util)

 Write a Java program to illustrate the concept of class with method overloading.

 Write a Java program to illustrate the concept of Single level and Multi level

Inheritance.

 Write a Java program to illustrate the concept of Dynamic Polymorphism.

 Write a Java program to demonstrate the Interfaces & Abstract Classes.

 Write a Java program to implement the concept of exception handling.

 Write a Java program to illustrate the concept of threading using Thread Class and

runnable Interface.

 Write a Java program to illustrate the concept of multi-threading that creates three

threads. First thread displays ―Good Morning‖ every one second, the second thread

displays ―Hello‖ every two seconds and the third thread displays ―Welcome‖ every

three seconds.

 Write a Java program to implement serialization concept

 Write a Java program to illustrate the concept of Thread synchronization.

 Write a Java program that correctly implements producer consumer problem using the

concept of inter thread communication.

 Write a Java program that reads a file name from the user, and then displays

information about whether the file exists, whether the file is readable, whether the file

is writable, the type of file and the length of the file in bytes.

 Write a Java program that reads a file and displays the file on the screen, with a line

number before each line.

 Write a Java program that displays the number of characters, lines and words in a text

file.

 Write a Java program to change a specific character in a file.

 Note: Filename, number of the byte in the file to be changed and the new character

are specified on the command line.

 Write a Java program to illustrate collection classes like Array List, Iterator, Hash

map etc.

 Write a Java program for handling mouse & key events.

INFORMATION TECHNOLOGY DEPARTMENT 80

JAVA PROGRAMMING LAB MANUAL

 A program to illustrate the concept of I/O Streams

 Write a Java program that works as a simple calculator. Use a grid layout to arrange

buttons for the digits and for the +, -,*, % operations. Add a text field to display the

result.

Suggested Reading:

1. Herbert Scheldt, ―The Complete Reference Java, 7th Edition, Tata McGraw Hill,

2006.

2. James M Slack, Programming and Problem Solving with JAVA, Thomson Learning,

2002.

3. C Thomas Wu, An Introduction to Object Oriented Programming with Java 5th

Edition, McGraw Hill Publishing, 2010.

4. H. M. Dietel and P. J. Dietel, Java How to Program, Sixth Edition, Pearson Education /

PHI

	INFORMATION TECHNOLOGY DEPARTMENT JAVA PROGRAMMING LAB MANUAL
	Introduction TO JAVA Programming Laboratory
	Laboratory Objective
	Overview of Java
	Features of JAVA
	JDK
	3. System Requirement
	4. PATH and CLASSPATH
	Windows XP

	Program 1
	Problem Description
	Pseudocode
	Problem Validation
	Input:
	Output:

	Problem Description (1)
	Pseudocode (1)
	Problem Validation (1)
	Input:
	Output:

	Problem Description (2)
	Syntax for Creating Object:

	Pseudo Code
	Problem Validation (2)
	Input:
	Output:

	Problem Description (3)
	Syntax for Creating Object:

	Pseudocode (2)
	Problem Validation (3)
	Input:
	Output:

	Problem Description (4)
	Pseudocode (3)
	Problem Validation (4)
	Input:
	Output:

	Problem Description (5)
	Pseudocode (4)
	Problem Validation (5)
	Input:
	Output:

	Problem Description (6)
	Pseudocode (5)
	Problem Validation (6)
	Javac Quadratic.java
	Java Quadratic

	Program 8
	Problem Description (7)
	Pseudocode (6)
	Problem Validation (7)
	Javac Fibn.java
	Java Fibn
	Output:

	Problem Validation (8)
	Javac Fibrn.java
	Java Fibrn

	Program 9
	Problem Description (8)
	Problem Validation (9)
	Input: Output:

	Program 10
	Problem Description (9)
	Problem Validation (10)
	Input:
	Output:

	Problem Description (10)
	Problem Validation (11)
	Input:

	Program 12
	Problem Description (11)
	Pseudocode (7)
	Problem Validation (12)
	Input: Output:

	Program 13
	Problem Description (12)
	Pseudocode (8)
	Problem Validation (13)
	Input: Output:

	Program 14
	Problem Description (13)
	Problem Validation (14)
	Input:
	Output:

	Problem Description (14)
	Pseudocode (9)
	Problem Validation (15)
	Input: Output:

	Program 16
	Problem Description (15)
	Pseudocode (10)
	Problem Validation (16)
	Input:
	Output:

	Problem Description (16)
	Steps for Creating Package:

	Pseudocode (11)
	Importing Package

	Problem Validation (17)
	Input: Output:

	Program 18
	Problem Description (17)
	Pseudocode (12)
	Problem Validation (18)
	Input:
	Output:

	Problem Description (18)
	Pseudocode (13)
	Declare an Interface
	Create the class and call the interface.

	Problem Validation (19)
	Input:
	Output:

	Problem Description (19)
	Pseudocode (14)
	Problem Validation (20)
	Output:

	Problem Description (20)
	Pseudocode (15)
	Problem Validation (21)
	Input: Output:

	Program 22
	Problem Description (21)
	Pseudocode (16)
	Problem Validation (22)
	Input: Output:

	Program 23
	Problem Description (22)
	Pseudocode (17)
	Problem Validation (23)
	Input:
	Output:

	Pseudocode (18)
	Problem Validation (24)
	Input: Output:

	Write a Java program to implement serialization concept
	Problem Definition
	Problem Description
	Pseudocode
	Problem Validation
	Input:

	Program 26
	Problem Description (1)
	Pseudocode (1)
	Problem Validation (1)
	Input: Output:

	Program 27
	Problem Description (2)
	Pseudocode (2)
	Problem Validation (2)
	Input: Output:

	Program 28
	Problem Description (3)
	Pseudocode (3)
	Problem Validation (3)
	Input:
	Output:

	Problem Description (4)
	Arraylist
	Iterator

	Pseudocode (4)
	c) ArrayList
	d) Iterator
	e) Hashset

	Problem Validation (4)
	Input: Output:

	Program 30
	Problem Description (5)
	Pseudocode (5)
	Problem Validation (5)
	Input:
	Output:

	Problem Description Pseudocode
	Problem Validation (6)
	Output:

	Problem Description (6)
	Pseudocode (6)
	Problem Validation (7)
	Input: Output:

	Program 33
	Problem Description Pseudocode (1)
	Problem Validation (8)
	Output:

	Problem Description (7)
	Pseudocode (7)
	Problem Validation (9)
	Output:

	Problem Description (8)
	Pseudocode (8)
	Problem Validation (10)
	Output:

	Problem Description (9)
	Pseudocode (9)
	Problem Validation (11)
	Output:
	Suggested Reading:

