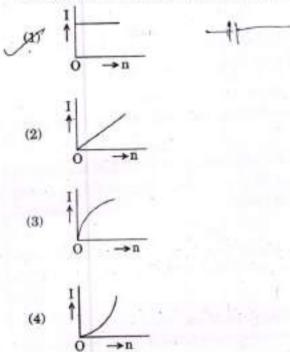
ACHLA

Test Booklet Code

This Booklet contains 24 pages.


Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
- The test is of 3 hours duration and this Test Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is DD. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray
 marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified
 space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is not permissible on the Answer Sheet.

- A carbon resistor of (47 ± 4.7) kΩ is to be marked with rings of different colours for its identification. The colour code sequence will be
 - (1) Violet Yellow Orange Silver
 - (2) Yellow Violet Orange Silver
 - (3) Yellow Green Violet Gold
 - (4) Green Orange Violet Gold
- 2. A battery consists of a variable number 'n' of identical cells (having internal resistance 'r' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n?

A set of 'n' equal resistors, of value 'R' each, are connected in series to a battery of emf 'E' and internal resistance 'R'. The current drawn is I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I. The value of 'n' is

(1) 10 Serves: Reg =
$$nR$$
 nR nR 1
(2) 11 $V = InR$ $Y = I V = 101$
(3) 20 R $R = 1 = 101$

mallel Reg

An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is

(1) smaller

4 6

(2) 5 times greater

(3) 10 times greater

- (4) equal
- A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of 27°C two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz, the velocity of sound in air at 27°C is
 - (1) 330 m/s
 - (2) 339 m/s
 - (3) 350 m/s
- (4) 300 m/s
- 6. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 m/s² at a distance of 5 m from the mean position. The time period of oscillation is

(1)
$$2\pi s$$

(2) πs
(3) $2s$
(4) $1s$
(1) $2\pi s$
(2) πs
(2) πs
(3) $2s$
(4) $1s$
(4) $1s$
(4) $1s$
(5) $2\pi s$
(7) πs
(7

- The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is $F = 2^{\aleph}$
 - (1) independent of the distance between the plates.
 - (2) linearly proportional to the distance between the plates.
 - (3) proportional to the square root of the distance between the plates.
 - (4) inversely proportional to the distance between the plates.

 ACHLA/DD/Page 2
 V = I V = T SPACE FOR ROUGH WORK
 nT = 10T OT OT English

 Vn = 10I V = nI V = Z V = I

An electron of mass m with an initial velocity $\overrightarrow{V} = V_0 \hat{i} (V_0 > 0)$ enters an electric field $\overrightarrow{E} = -E_0 \hat{i} (E_0 = \text{constant} > 0)$ at t = 0. If λ_0 is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is

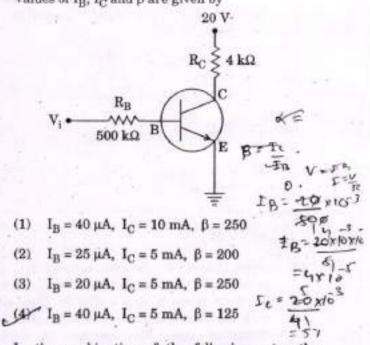
(1)
$$\frac{\lambda_0}{\left(1 + \frac{eE_0}{mV_0}t\right)}$$

(2)
$$\lambda_0 \left(1 + \frac{eE_0}{mV_0}t\right)$$

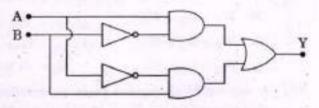
(3)
$$\lambda_0 t$$

(4) ₂₀

8.


9. When the light of frequency $2v_0$ (where v_0 is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_1 . When the frequency of the incident radiation is increased to $5v_0$, the maximum velocity of electrons emitted from the same plate is v_2 . The ratio of v_1 to v_2 is C = hv = hc

(1) 1:2
$$H(v - v_0)$$
 $hv = 1 mv$
(2) 1:4 $2v_0 - v_0 = v_0$ $v_1 v_1^2$ $\frac{2v_0}{5v_0}$
(3) 4:1 $5v_0 - v_0 = 4v_0 v_1 = v_1^2 \frac{5v_0}{5v_0}$
(4) 2:1 $\frac{1}{4} = \frac{v_1^2}{v_1} \frac{v_1 = 1}{v_1} v_2$


 For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is Comp.

- 11. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
 - (1) 1:1(27 1:-1)(3) 2:-1
- (4) 1:-2 ACHLA/DD/Page 3

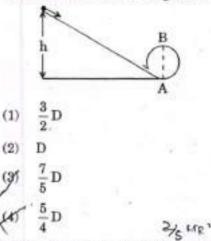
In the circuit shown in the figure, the input voltage V_i is 20 V, $V_{BE} = 0$ and $V_{CE} = 0$. The values of I_B , I_C and β are given by

In the combination of the following gates the output Y can be written in terms of inputs A and B as

(1) A.B

13.

(2) $A \cdot \overline{B} + \overline{A} \cdot B$


(3) A.B + A.B

(4) A+B

- In a p-n junction diode, change in temperature due to heating
 - (1) affects only reverse resistance
 - (2) affects only forward resistance
 - (3) does not affect resistance of p-n junction
 - (4) affects the overall V I characteristics of p-n junction

SPACE FOR ROUGH WORK

15. A body initially at rest and sliding along a 19. frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter AB = D. The height h is equal to

MR 16. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the 21. relation

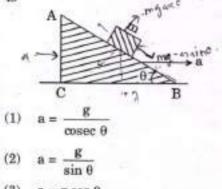
17.

t

A moving block having mass m, collides with another stationary block having mass 4m. The lighter block comes to rest after collision. When | 22. the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be

(1) 0.5
$$e = \frac{v_2 - v_1}{v_1 - v_2} = \frac{1}{-0}$$

(3) 0.8 $e = \frac{v_2 - v_1}{v_1 - v_2} = \frac{1}{-0}$
(4) 0.4 $e = \frac{v_2 - 0}{4v_2 - 0} = \frac{v_2}{4v_2}$

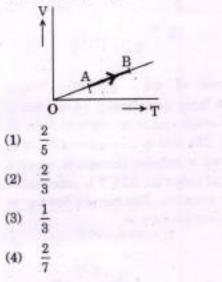

- 18. Which one of the following statements is incorrect?
 - (1)Rolling friction is smaller than sliding friction.
 - (2)Limiting value of static friction is directly proportional to normal reaction. FC= USN
 - (3)Frictional force opposes the relative motion.
 - Coefficient of sliding friction has dimensions of length. 15:51

ACHLA/DD/Page 4

The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ (2, 0, -3), about the point (2, -2, -2), is given b

(1)
$$-8\hat{i} - 4\hat{j} - 7\hat{k}$$

(2) $-4\hat{i} - \hat{j} - 8\hat{k}$
(3) $-7\hat{i} - 8\hat{j} - 4\hat{k}$
(4) $-7\hat{i} - 4\hat{j} - 8\hat{k}$


- 20. A toy car with charge q moves on a frictionle horizontal plane surface under the influence of uniform electric field E . Due to the force a] its velocity increases from 0 to 6 m/s in o second duration. At that instant the direction the field is reversed. The car continues to mo for two more seconds under the influence of th field. The average velocity and the average spe of the toy car between 0 to 3 seconds a V= U+ a+ O=6+ax respectively
 - 2 m/s, 4 m/s (1) 6= ax 1 - 6 = ax1 (2)1 m/s, 3 m/s 1 m/s, 3.5 m/s $\alpha = 6$ $\alpha = -2 \frac{1}{34}$ 1.5 m/s, 3 m/s $\sqrt{avg} = 3 \neq g = 99$ (3)(4) 1.5 m/s, 3 m/s
 - A student measured the diameter of a small st ball using a screw gauge of least con 0.001 cm. The main scale reading is 5 mm z zero of circular scale division coincides w 25 divisions above the reference level. If scr gauge has a zero error of - 0.004 cm, the corr = 36=2×6×50=36 diameter of the ball is
 - (1)0.521 cm 0.053 cm -26 = 2×2×5 = 36 = 3 -36 = 0.529 cm (2)(3)
 - 5= 34=0 UN
 - A block of mass m is placed on a smooth incliwedge ABC of inclination θ as shown in figure. The wedge is given an acceleration towards the right. The relation between a an for the block to remain stationary on the we ís

Er

SPACE FOR ROUGH WORK FISHIN H=F:

The volume (V) of a monatomic gas varies with 27. its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

- The fundamental frequency in an open organ 24. pipe is equal to the third harmonic of a closed 28. organ pipe. If the length of the closed organ pipe is 20 cm, the length of the open organ pipe is
 - (1) 13.2 cm
 - 8 cm (2)
 - 12.5 cm (3)
 - (4) 16 cm
- At what temperature will the rms speed of 25. oxygen molecules become just sufficient for escaping from the Earth's atmosphere ? (Given :

Mass of oxygen molecule (m) = 2.76×10^{-26} kg Boltzmann's constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$

	(1)	$2{\cdot}508\times10^4~{\rm K}$	3 kb YT	
	yes .	$8{\cdot}360\times10^4~{\rm K}$	11-2+10= BBT to "	
	(3)	$5\text{-}016\times10^4~\mathrm{K}$	11-2×10×11-1×10=3×E-3×	29. T
	(4)	$1{\cdot}254\times10^4~{\rm K}$	11-2×10×11-1210 2 32	F
26.	The bety	efficiency of an veen the freezin	n ideal heat engine working ig point and boiling point of	
12.75	mot	or ic	11 av 11.2× 106-2422 -	

(4)12.5%

ACHLA/DD/Page 5

Unpolarised light is incident from air on a plane surface of a material of refractive index 'µ'. At a particular angle of incidence 'i', it is found that refracted reflected and rays the are perpendicular to each other. Which of the following options is correct for this situation ?

- (1) Reflected light is polarised with its electric vector parallel to the plane of incidence
- Reflected light is polarised with its electric vector perpendicular to the plane of incidence

3)
$$i = \sin^{-1}\left(\frac{1}{\mu}\right)$$

- In Young's double slit experiment the separation d between the slits is 2 mm, the wavelength λ of the light used is 5896 Å and distance D between the screen and slits is 100 cm. It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
 - (1) 1·8 mm
 - 1.9 mm (2)
 - (3)2.1 mm
 - (4)1.7 mm

An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of

- small focal length and large diameter (1)
- large focal length and small diameter (2)
- large focal length and large diameter (3)
- small focal length and small diameter (4)

SPACE EOR ROUGH WORK

English

23.

- 30. An em wave is propagating in a medium with a 34. velocity $\vec{V} = V\hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
- w z direction (2)z direction Q = 5×10 Q=20×10 (3) y direction 0=1x5x10 = Vx20 (4)- x direction = SX 10-2
- The refractive index of the material of a prism is 31. $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
 - (1)60°
 - (2)45°
 - (3) 30°
 - (4)zero

An object is placed at a distance of 40 cm from a 32. concave mirror of focal length 15 cm. If the object 24 is displaced through a distance of 20 cm towards 36 the mirror, the displacement of the image will be 30 cm away from the mirror 4 = 1 + 1(1)36 cm away from the mirror 15=1+10 (3)30 cm towards the mirror 1= 1- 20 = 24 (4)36 cm towards the mirror

- The magnetic potential energy stored in a certain 33. inductor is 25 mJ, when the current in the inductor is 60 mA. This inductor is of inductance
 - (1)0-138 H 4=25x1 (2)138-88 H = 25×107 (3)1.389 H 13-89 H ar

AC

Current sensitivity of a moving coil galvanometer is 5 div/mA and its voltage sensitivity (angular deflection per unit voltage applied) is 20 div/V. The resistance of the galvanometer is

0 = 5×10 20 + ×5×10 = V×9

44	40 Ω	0 -5 D = 20.	P
18(2)	25Ω	I V = 20V	1
¥.(3)	250 Ω	I V 0= 20V	
Ī (4)	500 Ω	B 81=20VS	
A	motallie	T	

R=

35.

36.

metallic rod of mass per unit length 0.5 kg m⁻¹ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is

T= MBnno (1)7-14 A (2)5.98 A 20×10 14.76 A (3)20-01 100 × 10 (4)11.32 A

An inductor 20 mH, a capacitor 100 µF and a resistor 50 Ω are connected in series across a source of emf, $V = 10 \sin 314 t$. The power loss in the circuit is

PIIR. 0.79 W (1)2= 2500+1 (2)0-43 W (3)2.74 W (4)1.13 W

37. A thin diamagnetic rod is placed vertically 2-4 between the poles of an electromagnet. When the current in the electromagnet is switched on, then 25 the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from

- (1)the current source
- (2)the magnetic field
- the lattice structure of the material of the (3)rod

the induced electric field due to the (4)changing magnetic field

SPACE FOR ROUG	H WORK 25	0 13	5.5.3	English
360V × 103	260	18 300	*	
	28	70		
	54 × 10°	59 × 10 5000	360V 260 IT	3607 260 18 200

viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is remain constant for the sphere ? proportional to r3 (1) (1)Angular velocity r2 (2)(2)Moment of inertia r^5 (3)(3)Rotational kinetic energy r^4 (4)(4) Angular momentum The power radiated by a black body is P and it 43. 39. radiates maximum energy at wavelength, λ_0 . If the temperature of the black body is now changed so that it radiates maximum energy at position of the Sun S as shown in the figure. wavelength $\frac{3}{4}\lambda_0$, the power radiated by it Then P= GEAT becomes nP. The value of n is 1=bT9 PI= 1 - 13) A: 7 27 A (1)V, >V. >VB $\frac{4}{3} = \frac{1}{\tau_{\star}}$ (1) $K_{A} < K_{B} < K_{C}$ (2)3 $T_{2} = \begin{cases} T_{1} = \begin{cases} T_{1} = \begin{cases} T_{1} = 1 \\ T_{2} = \end{cases} \\ T_{2} = \begin{cases} T_{1} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{2} = \begin{cases} T_{1} = 1 \\ T_{2} = 1 \end{cases} \\ T_{3} = 1 \end{cases} \\ T_{4} = 1 \end{cases} \\ T_{5} = 1$ \\ T_{5} = 1 \end{cases} \\ T_{5} = 1 \\ T_{5} = 1 \\ T_{5} = 1 \end{cases} \\ T_{5} = 1 \\ T_{5} 256(3)81 81 256A sample of 0.1 g of water at 100°C and normal 44. 40. A solid sphere is in rolling motion. In rolling

SPACE FOR ROUGH WORK

Ati = Fxg F2= 9F.

pressure (1.013 × 10⁵ Nm⁻²) requires 54 cal of heat energy to convert to steam at 100°C. If the volume of the steam produced is 167.1 cc, the change in internal energy of the sample, is

A small sphere of radius 'r' falls from rest in a 42.

38.

(1)
$$104.3J$$

(2) $208.7J$
(3) $42.2J$
 $208.7J$
 $308.7J$
 308

(4) 84·5 J

Two wires are made of the same material and 41. 45. have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount? at = Fil al = fi (+ 9F Aldi=Ande

6F Ali=3Ali 4F Li=3 (2)(3)(4)

ACHLA/DD/Page 7

A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would

The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are KA, KB and KC, respectively. AC is the major axis and SB is perpendicular to AC at the

motion a body possesses translational kinetic5 energy (K,) as well as rotational kinetic energy? (K_r) simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is 10 7:10 (2) 5:7 10:7 1 (mv+ SHEW2) (4) 2:5 If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the 2 = GM following is not correct ?

- Raindrops will fall faster. (1)
- Walking on the ground would become more (2)difficult. 12
- Time period of a simple pendulum on the S (3)TOTA Earth would decrease.
- 'g' on the Earth will not change.
 - $\frac{1}{2} \left(M R^2 \omega^2 + \frac{5}{8} M R^3 \omega^3 English \\ \frac{1}{2} \left(\frac{12}{7} M R^2 \omega^2 \right) \frac{5}{8} \frac{1}{7} \frac{1}{7}$

			is a	un amino acid derived	50.		ates differ from all other protozoans in
1	1011	none?				(1)	using flagella for locomotion
A	1)	Epinephrine				(2)	having a contractile vacuole for removing excess water
(2)	Ecdysone				(3)	using pseudopodia for capturing prey
(3)	Estradiol				(4)	having two types of nuclei
	4)	Estriol	5-0 112		51.	chai	ntify the vertebrate group of animals racterized by crop and gizzard in its digestive em.
		ch of the following prrectly paired with		ructures or regions is		(1)	Amphibia
	-					.(2)	Reptilia
(1)	Medulla oblongata	2	controls respiration	1	(a)	Aves
			and cardiovascular reflexes.	1	(4)	Osteichthyes	
5	<i>3</i> /	Limbic system	:	consists of fibre tracts that	52.		ch of the following organisms are known as f producers in the oceans ?
				interconnect different regions of		(1)	Dinoflagellates .
				brain; controls		(2)	Diatoms
		2a		movement.		(3)	Cyanobacteria
(3)	Hypothalamus		production of		(4)	Euglenoids
			releasing hormones and regulation of temperature,		53.	Whi hom	ch one of these animals is <i>not</i> a neotherm?
				hunger and thirst.		(1)	Macropus
(-	4)	Corpus callosum	ŧ	band of fibers connecting left and	L	127	Chelone
		a C		right cerebral		(3)	Camelus
				hemispheres.	1	(4)	Psittacula
48. T	'he ts p	transparent lens in lace by	the	human eye is held in	54.	Whie met	ch of the following animals does not undergo amorphosis ?
X	1)	ligaments attached	to	the ciliary body	V	(1)	Earthworm .
C	2)	ligaments attached	to	the iris		(2)	Tunicate .
G	3)	smooth muscles att	ach	ed to the iris		(3)	Moth .
(4)	smooth muscles att	ach	ed to the ciliary body		(4)	Starfish
		ch of the following ificant role in osteop		ormones can play a sis?	55.	Whie a ma	ch of the following features is used to identify ale cockroach from a female cockroach ?
	1)	Aldosterone and Pr		·	U	(1)	Presence of a boat shaped sternum on the
	2)	Progesterone and A		1000		1	9 th abdominal segment
	37	Estrogen and Parat		1202034672		(2)	Presence of caudal styles ,
~			100			(3)	Forewings with darker tegmina
6	4)	Parathyroid hormo	ne i	and Protactin		(4)	Presence of anal cerci
APHIA	00	Page 8	-	220000000000000000000000000000000000000	230.59		

SPACE FOR ROUGH WORK

	ich one of the following population eractions is widely used in medical science for production of antibiotics ?	STREET, STREET, ST	mones secreted by the placenta to maintain
(1)	Commensalism	. ar	hCG, hPL, progestogens, prolactin
(2)	Mutualism		
(3)	Parasitism	(2)	hCG, hPL, estrogens, relaxin, oxytocin
(4)	Amensalism	(3)	hCG, hPL, progestogens, estrogens
7. All	of the following are included in 'Ex-situ servation' except	(4)	hCG, progestogens, estrogens, glucocorticoids
(1)	Wildlife safari parks		and the second sec
. 197	Sacred groves	62. The	contraceptive 'SAHELI'
(3)	Botanical gardens	(1)	blocks estrogen receptors in the uterus,
(4)	Seed banks		preventing eggs from getting implanted.
8. Mat	tch the items given in Column I with those in umn II and select the <i>correct</i> option given ow :	(3)	increases the concentration of estrogen and prevents ovulation in females. is an IUD.
	Column I Column II	(4)	is a post-coital contraceptive.
a.	Eutrophication i. UV-B radiation	-	
ь.	Sanitary landfill ii. Deforestation	63. The	amnion of mammalian embryo is derived
с.	Snow blindness iii. Nutrient	from	Name and a statement of the statement of th
	enrichment	(1)	ectoderm and mesoderm
d.	Jhum cultivation iv. Waste disposal	(1)	endoderm and mesoderm
	a b c d	2003	
(1)	ii i iii iv	(3)	mesoderm and trophoblast
(2)	i iii iv ii	(4)	ectoderm and endoderm
(8)	iii iv i ii	1	
(4)	i ii iv iii	64. The spen	difference between spermiogenesis and rmiation is
). In s	a growing population of a country,	(1)	In spermiogenesis spermatids are formed,
Sa	pre-reproductive individuals are more than the reproductive individuals.	u,	while in spermiation spermatozoa are formed.
(2)	reproductive individuals are less than the post-reproductive individuals.	(2)	In spermiogenesis spermatozoa are formed,
(3)	reproductive and pre-reproductive individuals are equal in number.		while in spermiation spermatids are formed.
(4)	pre-reproductive individuals are less than the reproductive individuals.	(3)	In spermiogenesis spermatozoa from sertoli cells are released into the cavity of
	ch part of poppy plant is used to obtain the g "Smack" ?	1.5	seminiferous tubules, while in spermiation spermatozoa are formed.
(1)	Flowers	. (1)	In spermiogenesis spermatozoa are formed,
. (2)	Latex	1	while in spermiation spermatozoa are
(3)	Roots		released from sertoli cells into the cavity of
(4)	Leaves	111	seminiferous tubules.

1 (1) (1) (1) (1) (1) (1)

(3 (4 ACHLA/) î		iii	ii	í			(4)	v	iv	1	ili	
100													
	5 2		iv	ii	iii	N.S. 10. 17		(3)	v	iv	i	ü	12 S. 13
J2		ii	i ,	iv	ii		L	127	iv -	i	ii	iii	
4	H i	ii	ii	i .	iv	1000		(1)	iv	v	ii -	ii	1
	. 4	R	b	c	d				8	b	c	d	and start
d.	. 1	Residu	al vo	lume	iv.	1000 - 1100 mL							convoluted tubule
		volum	S							31 6	. 3	v.	Proximal
c.	. 1	Expira	atory	Reserve	111.	500 - 550 mL		19			1		corpuscle
		volum		neserve	ii.	1100 - 1200 mL		d.	Sto	rage of ur	ine	iv.	Malpighian
a b		A. C. M. S. M.		ne Reserve	1.	2500 - 3000 mL			uri			MI.	ormary bladder
1		Colun Tidal	1997		- 32	Column II		c.	Tra	insport of		111	Urinary bladder
1	OCTON.	× :		1000	10000	100 FL 20		ь.		ncentratio trine	n	ü.	Ureter
(Colu	mn II	and	select th	te cor	mn I with those in rect option given		a.		rafiltrati		i.	Henle's loop
		ũ				10000 and 20			111			•	System)
	(4)	i	ii i	iii iii			1		(F)	inction)			(Part of Excretory
	(2) (3)	1	iii	ii					Co	lumn I			Column II
1	(1)	iii	i	ii			6	bel	ow ;				
	2217	a	b	c		204270220		Co	lumn	II and	select (he	correct option given
						trium and right entricle	69.	Ma	tch t	he items	given i	n Ce	olumn I with those in
	c.	Semi	luna	valve		etween right	1	(4)	iv	i	ii		iii
						ulmonary artery		(3)	ii	iii	i		iv
	0.	DICU	spid v	aive		letween right entricle and	1	(2)	i	ii	ш		iv
	Ь.	Dia		-		nd left ventricle	1.1	(1)) iii	ii	ív		i
	8.	Tric	uspid	valve		Between left atrium			a	b	c		d .
		13111	mn I			Column II				ephritis		ur	ine
	C01	umn) ow :	II and	d select	the co	orrect option given		d.	G	lomerula	r iv		resence of glucose in
66,	Ma	tch th	e iten	as given	in Col	umn I with those in		c.	R	enal calc	uli iii		flammation in omeruli
	(4)		rease amm:	d resp ation of b	oirator ronchi	y surface; oles		50 1850			821 - 20	88	ilts within the kidney
	(4)	24.5		ation of b	ronchi	ioles		b.	G	lout	ii		lass of crystallised
	(3)	res	reased	ry surfac	e iratory			a		Hycosuria	ı i.		ccumulation of uric cid in joints
	(2)	Inc	rease	d numbe	r of br	onchioles; Increased	4	1.14		Column I			Column II
L	1	res	pirato	ation of ry surface	t bros	nchioles; Decrease	đ	0		ka n			
	en	physe	ma, r	espective	ely ?	100.000 x 1000 10 - 1 01 0 - 1940 x 100		5	colun elow	in II and	select	the	correct option given
	rej	presen	of t ts th	e lung	conditi	options correctl ons in asthma an	y 61	683 B	latch	the item	s given	in	Column I with those in

SPACE FOR ROUGH WORK

70.		ch of the following events does <i>not</i> occur in th endoplasmic reticulum?	76.		of the following are part of an operon except
	(1)	Protein folding		(1)	an operator
	(2)	Protein glycosylation		(2)	structural genes
	(3)	Cleavage of signal peptide		JES)	an enhancer
	(A)	Phospholipid synthesis		(4)	a promoter
1	-	CONTRACTOR OF CONTRACTOR OF CONTRACTOR	77.	Mat	ch the items given in Column I with those in
71.	2357	ch of these statements is <i>incorrect</i> ?	1.	Çolı	umn II and select the correct option given
	(1)	Enzymes of TCA cycle are present in mitochondrial matrix.		belo	The second se
	(0)				Column I Column II
	(2)	Glycolysis occurs in cytosol.		а.	Proliferative Phase i. Breakdown of
	(3)	Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.			endometrial lining
,	(m)	Oxidative phosphorylation takes place in		b.	Secretory Phase ii. Follicular Phase
		outer mitochondrial membrane.		c.	Menstruation iii. Luteal Phase
12.	Niss	l bodies are mainly composed of			a b c
	(1)	Proteins and lipids		(1)	
	(2)	DNA and RNA		(2)	
	(3)	Nucleic acids and SER			
	(4)	Free ribosomes and RER		134	ii iii i
73.	Whie	ch of the following terms describe human		(4)	iii ii
		ition ?	78.	Acce	ording to Hugo de Vries, the mechanism o
	(1)	Thecodont, Diphyodont, Homodont		evol	lution is
L	127	Thecodont, Diphyodont, Heterodont	1.5	(1)	Multiple step mutations
	(3)	Pleurodont, Monophyodont, Homodont	L	(2)	Saltation
	(4)	Pleurodont, Diphyodont, Heterodont	1 1	(3)	Phenotypic variations
(A)	Sele	ct the incorrect match :		(4)	Minor mutations
0	(1)	Lampbrush – Diplotene bivalents	79.	Aw	oman has an X-linked condition on one of her
		chromosomes		x	chromosomes. This chromosome can be
	(2)	Allosomes - Sex chromosomes	1	inhe	erited by
	(3)	Submetacentric - L-shaped chromososmes	-	(1)	Only daughters
		chromosomes		(2)	Only sons
	4	Polytene – Oocytes of amphibians chromosomes		(3)	Only grandchildren
	1	And the second se	- 1	(4)	Both sons and daughters
75.		y ribosomes may associate with a single NA to form multiple copies of a polypeptide	80.	AG	GTATCGCAT is a sequence from the coding
		altaneously. Such strings of ribosomes are	1000		and of a gene. What will be the corresponding
		ned as			uence of the transcribed <u>mRNA</u> ?
	(1)	Polysome		(1)	AGGUAUCGCAU
1112	(2)	Polyhedral bodies	1	(2)	UGGTUTCGCAT
	(3)	Plastidome		(3)	ACCUAUGCGAU
	(4)	Nucleosome	1 1	UAD.	UCCAUAGCGUA

ACHLA/DD/Page 11

A DESCRIPTION OF A DESC

320

+

81. Which of the following gastric cells indirectl help in crythropoiesis ?	y 85. Which of the following is not an autoimmune disease ?
	(1) Psoriasis
(1) Chief cells	(2) Rheumatoid arthritis
(2) Mucous cells	(3) Alzheimer's disease
(3) Goblet cells	(4) Vitiligo
Parietal cells	
 82. Match the items given in Column I with those in Column II and select the correct option given below : Column I Column II 	divergent evolution, select the <i>incorrect</i> option : (1) Forelimbs of man bet
a. Fibrinogen i. Osmotic balance	87. Conversion of milk to curd improves its
b. Globulin ii. Blood clotting	indefitional value by increasing the amount of
in the second seco	(1) Vitamin D
c. Albumin iii. Defence mechanism	(2) Vitamin A
a b c	(8) Vitamin B ₁₂
(1) iii ii i	(4) Vitamin E
(2) i ii iii	88. In which disease does mosquito transmitted
(3) i iii ii	patrogen cause chronic inflammation of
(4) ii iii i	lymphatic vessels ?
83. Which of the following in	(2) Ascariasis
of the following is an occupational	(3) Ringworm disease
respiratory disorder ?	(4) Amoebiasis
(1) Anthracis	
Silicosis	89. The similarity of bone structure in the forelimbs of many vertebrates is an example of
(3) Botulism	Homology
(4) Emphysema	(2) Analogy
cov impossenta	(3) Convergent evolution
84. Calcium is important in skeletal muscle	(4) Adaptive radiation
contraction 1	90. Which of the following characteristics represent
(3) binds to troponin to remove the masking of	inhumance of blood groups' in humans ?
active sites on actin for myosin.	Cart Dominance
(2) activates the myosin ATPase by binding to	b. Co-dominance
· II.	d. Incomplete dominance
(3) detaches the myosin head from the actin	and the second s
filament.	e. Polygenic inheritance (1) b, c and e
(4) prevents the formation of bonds between	Jar a, b and c
the myosin cross bridges and the actin	(3) b, d and e
filament.	(4) a, c and e
ACHLA/DD/Page 12 SPACE FOR DO	

ACHLA/DD/Page 12

SPACE FOR ROUGH WORK

	life-ti	h of the following flowers only once in its me? Bamboo species	98.	asses	ndia, the organisation responsible for sing the safety of introducing genetically fied organisms for public use is	
		Jackfruit		(1)	Indian Council of Medical Research (ICMR)	
		Mango Papaya		1-1	Council for Scientific and Industrial Research (CSIR)	
92.	Which	h of the following pairs is <i>wrongly</i> hed?			Research Committee on Genetic Manipulation (RCGM)	
~	(2)	Starch synthesis in pea: Multiple allelesABO blood grouping: Co-dominanceXO type sex: Grasshopper	•	(g)	Genetic Engineering Appraisal Committee (GEAC)	
		determination T.H. Morgan : Linkage	99.	vecto	h of the following is commonly used as a <u>r for introducing a DNA fragment in human</u> hocytes ?	
93.	32	t the correct statement :		1000	Retrovirus	
00,	12,000	Franklin Stahl coined the term "linkage".	V	/		
	10.10	Punnett square was developed by a British			Ti plasmid	
V		scientist.	1		λ phage	
	(3)	Spliceosomes take part in translation.		(4)	pBR 322	
		Transduction was discovered by S. Altman. experimental proof for <u>semiconservative</u>	100.	A	correct order of steps in Polymerase Chain fion (PCR) is	*
94.		cation of DNA was first shown in a			Extension, Denaturation, Annealing	
		Fungus	2	(2)	Annealing, Extension, Denaturation	
	121	Bacterium		(3)	Denaturation, Extension, Annealing	
		Plant		(4)	Denaturation, Annealing, Extension	
95.		Virus ts are produced by	101.	A 'ne	w' variety of rice was patented by a foreign pany, though such varieties have been	
		Meiotic divisions			ent in India for a long time. This is related to	
r		Mitotic divisions	1	(1)	Co-667	
	1.02.12	Parthenocarpy	1.	(2)	Sharbati Sonora	
		Parthenogenesis	1	1.000	Lerma Rojo	
96.	prese	h of the following has proved <u>helpful</u> in rving pollen as fossils ?	1		Basmati	1. 1.
		Pollenkitt	102.	Selec	t the correct match :	
	(2)	Cellulosic intine	1	in	Ribozyme - Nucleic acid	
	(3)	Oil content		(2)	F2 × Recessive parent - Dihybrid cross	ľ
1	(ar	Sporopollenin	1	(3)	T.H. Morgan - Transduction	
97.	12.52	t the correct match :		(4)	G. Mendel - Transformation	
	(1)	Alec Jeffreys – Streptococcus pneumoniae	103.	Use	of bioresources by multinational companies organisations without authorisation from the	
	(2)	Alfred Hershey and - TMV Martha Chase	1		erned country and its people is called Bio-infringement	
	(3)	Matthew Meselson - Pisum sativum and F. Stahl		125	Biopiracy	
. ((4)	Francois Jacob and – Lac operon Jacques Monod		(3) (4)	Biodegradation Bioexploitation	
ACH		Page 13 SPACE FOR	ROUG	HWOR	K English	

104. Natality refers to 110. The two functional groups characteristic of Death rate · (2) sugars are (12) Birth rate hydroxyl and methyl (1) Number of individuals leaving the habitat (3)(2)carbonyl and methyl Number of individuals entering a habitat (4) (3)carbonyl and phosphate 105. Niche is (4)carbonyl and hydroxyl all the biological factors in the organism's (1) 111. Which among the following is not a prokaryote? environment HT Saccharomyces the physical space where an organism lives (2)(2)Mycobacterium the range of temperature that the organism (3)(3)Nostoc needs to live (4)Oscillatoria the functional role played by the organism (41) 112. Stomatal movement is not affected by where it lives (1)Temperature 106. What type of ecological pyramid would be (2)Light obtained with the following data ? (3)O₂ concentration Secondary consumer : 120 g (4) CO₂ concentration Primary consumer : 60 g 113. Which of the following is not a product of light Primary producer : 10 g reaction of photosynthesis ? Inverted pyramid of biomass (1)(1)ATP (2)Pyramid of energy 127 NADH Upright pyramid of numbers (3)(3)NADPH Upright pyramid of biomass (4) (4)Oxygen 114. The Golgi complex participates in 107. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and (1)Fatty acid breakdown Formation of secretory vesicles release of molecular oxygen ? 127 Respiration in bacteria (3)(1)Carbon (2) CI (4)Activation of amino acid 115. Which of the following is true for nucleolus ? (3)Fe Oxygen Larger nucleoli are present in dividing cells. (4)(1) It is a membrane-bound structure. (2)World Ozone Day is celebrated on It takes part in spindle formation. (3)5th June 1 (1) It is a site for active ribosomal RNA 41 synthesis. 21st April (2)116. The stage during which separation of the paired 16th September homologous chromosomes begins is (3) (1)Pachytene 22nd April (4)(2) Diplotene . Which of the following is a secondary pollutant ? (3)Diakinesis (4) Zygotene (1)CO 117. Stomata in grass leaf are (2)CO. (1)Dumb-bell shaped (8) SO₂ (2)Kidney shaped (4) 08 (3)Rectangular -11) Barrel shaped LA/DD/Page 14 SPACE FOR ROUGH WORK

118. C	asp	arian strips occur in	125.	Win	ged p	ollen gr	ains a	ire pr	esen	t in		
()	1)	Epidermis		(1)	Mus	stard						
0	2)	Pericycle		(2)	Cyc	a.s						
(:	3)	Cortex		(3)	Mar	ago						
19	¥	Endodermis		(4)	Pina	us				40 - C		
19. P	lan	ts having little or no secondary growth are	126.	Afte	r kar	yogamy	follo	wed t	w m	eiosis	spores	an
. 4	Ł)	Grasses	0.000			exogen					1000	-52
(2)	Deciduous angiosperms		(1)		rospora						
(3	3)	Conifers		(2)		rnaria						
(4	4)	Cycads	11	(3)	Aga	rîcus						
20. P	neu	imatophores occur in	1	(4)	Sac	charomy	rces					
	E)	Halophytes	107	Mat	A sh			- 0				
1	2)	Free-floating hydrophytes	127.			e items II and :						
	3)	Carnivorous plants		belo		in and	select	une,	corr	eet o	Peron Bi	r vel
3.23	4)	Submerged hydrophytes		0010	12.24	mn I		Colu	mn	11		
		t potato is a modified		a.	227	barium	i.		1000	ice ha	ving a	
	1)	Stem		3			-				eserved	
10	27	Adventitious root								nd anin		
~	3)	Tap root	1.0	b.	Key		ii.	A lis	t tha	at enu	nerates	F
1.1	4)	Rhizome				ja.				ally a		
		ndary xylem and phloem in dicot stem are uced by						with	brie	fdesc	n an are ription	a
0.5	1)	Apical meristems							E	entific		
X	2022	Vascular cambium		c.	Mus	eum	111,		10 C C C C C		e dried	
19	-	Phellogen						- C			pecimer eets are	
	4)	Axillary meristems						kept		on sh	eets are	E.
23. V	Vhic	th of the following statements is correct ?	1	d.	Cat	alogue	ív.	10001000		t conta	uning a	lis
1	1001111	Ovules are not enclosed by ovary wall in						of ch	arac	ters a	nd their	•
V		gymnosperms.	1.1	÷		1.00	4.4	alter	nate	s whie	h are	40
C	2)	Selaginella is heterosporous, while Salvinia is homosporous.		15				help			tificatio	n o
(3	3)	Horsetails are gymnosperms.			a	ь	c		d			
10.55	4)	Stems are usually unbranched in both		(1)	i	iv	iii		ii			
	-201	Cycas and Cedrus.		(2)	iii	ii	i	1.88	iv	100	(inc.)	
24. S	elec	t the wrong statement :		(3)	ii	iv	iii		i		1.	
C	1)	Cell wall is present in members of Fungi and Plantae.	-	(a)	iii	ìv	i		ii		100	1
C	2)	Mushrooms belong to Basidiomycetes.	128.			e is wro					to be and	1
	3)	Pseudopodia are locomotory and feeding structures in Sporozoans.	L	(2)	Bifl	flagellat agellate	zoosj		-	Brow	i <i>phonia</i> n algae	
	4)	Mitochondria are the powerhouse of the cell		(3)		ima cup			-	S. 22.77	hantia	
1		in all kingdoms except Monera.		(4)	Uni	cellular	organ	nism	-	Chlo	rella	TO.

C a	ose relationship with a species of moth, whe	ery 136. Which of the following statements is not true for halogens ?
n:	one of the two can complete its life cycle witho e other ?	out (A) All form monobasic oxyacids.
(1		(2) All are oxidizing agents.
,(2		All but fluorine show positive oxidation
(3		states.
(4		(4) Chlorine has the highest electron-gain
130. Pc	llen grains can be stored for several years i	
lic	uid nitrogen having a temperature of	
. (1		137. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
(2	- 80°C	(1) Fe
63	– 196°C	
(4)		(2) Zn
	nich of the following elements is responsible fo	(3) Mg
mi	intaining turgor in cells ?	tor (4) Cu
(1)		138. In the structure of CIE, the surely of
(2)	Sodium	138. In the structure of ClF ₃ , the number of lone pairs of electrons on central atom 'Cl' is
13)	Potassium	(1) one $\alpha = 2$
(4)	Calcium	125 two 2-2 2
132. Do	uble fertilization is	(3) four
(1)	Fusion of two male gametes of a pollen tub	
	with two different eggs	(4) three
(2)	Fusion of one male gamete with two pola nuclei	ar 139. The correct order of atomic radii in group 13 elements is
(3)	Fusion of two male gametes with one egg	(1) $B < Al < In < Ga < Tl$
Un	Syngamy and triple fusion	(2) $B < Al < Ga < In < Tl$
133. Ox	gen is not produced during photosynthesis by	B < Ga < Al < Tl < In
(M)	Green sulphur bacteria	
(2)	Nostoc	(4) B < Ga < Al < In < Tl
(3) (4)	Cycas Chara	140. The correct order of N-compounds in its decreasing order of oxidation states is
134. Wh	at is the role of NAD ⁺ in cellular	T HNO NO, N2, NH CI
res	piration ?	(2) HNO3, NO, NH4Cl, N2
(1)	It functions as an enzyme.	
(2)	It functions as an electron carrier.	(3) HNO ₃ , NH ₄ Cl, NO, N ₂
(3)	It is a nucleotide source for ATP synthesis.	(4) NH ₄ Cl, N ₂ , NO, HNO ₃
(4)	It is the final electron acceptor for anaerobic	c 141 Whith college and
and the second	respiration.	141. Which one of the following elements is unable to
135. In v	which of the following forms is iron absorbed	d form MF ₆ ³⁻ ion ?
	lants ?	(1) Ga
(1)	Ferric	(2) Al
(2) (3)	Ferrous Free element	(8) B
(0)	Both ferric and ferrous	
V(1)	Local lerric and ferrous	(4) In -

ACHLA/DD/Page 16

SPACE FOR ROUGH WORK

142. The compound A on treatment with Na gives B, 146. Following solutions wer and with PCl5 gives C. B and C react together to give diethyl ether. A, B and C are in the order

- C₂H₅OH, C₂H₆, C₂H₅Cl
- (2) C₂H₅OH, C₂H₅Cl, C₂H₅ONa
- (3) C₂H₅Cl, C₂H₆, C₂H₅OH
- (4) C2H5OH, C2H5ONa, C2H5CI
- 143. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is

cH2-CH3

- (1) CH = CH
- $CH_0 = CH_0$ (2)
- (3) CH3 CH3
- (4) CH.
- 144. The compound C7H8 undergoes the following reactions :

 $C_7H_8 \xrightarrow{3 \operatorname{Cl}_2/\Delta} A \xrightarrow{\operatorname{Br}_2/\operatorname{Fe}} B \xrightarrow{\operatorname{Zn}/\operatorname{HCl}}$

The product 'C' is

- m-bromotoluene (1)
- (2)o-bromotoluene
- 3-bromo-2,4,6-trichlorotoluene (3)
- p-bromotoluene (4)
- 145. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity ?
 - (1)N205
 - (2)NO₉
 - (3) $N_{2}O$
 - (4)NO-

ACHLA/DD/Page 17

SPACE FOR ROUGH WORK

English

Following solutions were prepared by mixing
different volumes of NaOH and HCl of different
concentrations: M'XIOO =
$$6-6 = 2$$
.
a. 60 mL $\frac{M}{10}$ HCl + 40 mL $\frac{M}{10}$ NaOH
b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
MXIOO = $5-6 = 2$.
b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
MXIOO = $5-6-6 = 2$.
b. 55 mL $\frac{M}{10}$ HCl + 45 mL $\frac{M}{10}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{10}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH
MXIOO = $5-6-6 = 2$.
c. 75 mL $\frac{M}{5}$ HCl + 25 mL $\frac{M}{5}$ NaOH

pH of which one of them will be equal to
$$1? = 75 \times 0222$$

(1) b
(2) a
(3) d
 75×0222
(2) a
 75×0222
(3) d
 75×0222
(4) $15 - 5$
(5) $15 - 5$
(6) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) $12 - 5$
(7) 12

147. On which of the following properties does the coagulating power of an ion depend ?

- (1)The magnitude of the charge on the ion 2.41×103= × alone
- Size of the ion alone (2)
- (3)Both magnitude and sign of the charge on x= 242×10 3×1 the ion
- The sign of charge on the ion alone^{2.3.3'} = $2^{4/2} \times 16^{-5} \approx 1\times16$ (4)in Water 148. The solubility of BaSO4 is
- 2.42×10^{-3} gL⁻¹ at 298 K. The value of its solubility product (Ksp) will be

(Given molar mass of BaSO₄ = 233 g mol⁻¹)

- $1.08 \times 10^{-8} \text{ mol}^2 \text{ L}^{-2}$ (4)

concentrations :

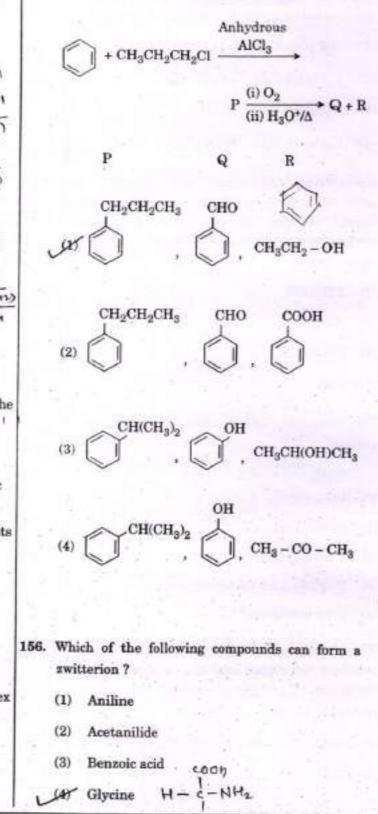
a.:

 $60 \text{ mL} \frac{M}{10} \text{ HCl} + 40$

b. $55 \text{ mL} \frac{M}{10} \text{ HCl} + 45$

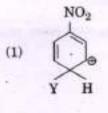
- 149. Given van der Waals constant for NH3, H2, O2 and CO2 are respectively 4.17, 0.244, 1.36 and 3.59, which one of the following gases is most easily liquefied ?
 - W NH3 (2) H_2 (3)0.
- (4) CO₉

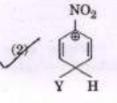
150. Match the metal ions given in Column I with the 155. Identify the major products P, Q and R in the spin magnetic moments of the ions given in Column II and assign the correct code :

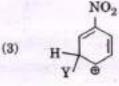

	2.2020.2		0.000			0.00.00.0
		Colur	nn I		Column	П
	a.	Co ³⁺		i.	√8 B.M.	S 19
	b.	Cr^{3+}		ii,	√35 B.M	1.
	c.	Fe ³⁺		iii.	√3 B.M.	01111
	d.	Ni ²⁺		iv.	√24 B.M	£ 11111
				v.	√15 B.M	1. (5(5+2)
		a	ь	c	d	VSE7
	ur	iv	v	ii	i-	V4(4+2) V4×6
-	(2)	i	ii	iii	iv	V446
	(3)	iv	i	ii -	iii -	\$ \$12+22
	(4)	iii	v	i	ii	VIVI
151.	Iron	carbon	yl, Fe(C		IL U W TT	
	(1)		uclear			V 24113
	(2)		nuclear			24.4
	1000					1.1
	(3)	trinuc				
	(4)	dinucl	ear			
152.	The comp	geome olex [N	try an i(CO) ₄]	d magn are 1	etic beha	viour of the
	(1)	square	e planar	r geomet	try and dia	amagnetic
	(2)				and diam	
	(3)					ramagnetic
	(4)				and para	
				cometry		magnetic

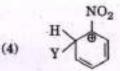
153. Which one of the following ions exhibits d-d transition and paramagnetism as well ?

- (1) CrC
- Cr207 (2)
- MnO (3)
- MnO4-(4)
- 154. The type of isomerism shown by the complex [CoCl2(en)2] is
 - Geometrical isomerism (1)
 - (2)Coordination isomerism
 - (3) Ionization isomerism
 - (4) Linkage isomerism 4


ACHLA/DD/Page 18


following sequence of reactions :




SPACE FOR ROUGH WORK

- 157. Which of the following molecules represents the 160. Magnesium reacts with an element (X) to form an order of hybridisation sp², sp², sp, sp from left to right atoms ?
 - (1) HC = C C = CH
 - (2) $CH_2 = CH C = CH$
 - (3) CH₂ = CH CH = CH₂
 - $(4) \quad CH_3 CH = CH CH_3$
- 158. Which of the following carbocations is expected to be most stable ?

159. Which of the following is correct with respect to - I effect of the substituents ? (R = alkyl)

(1)
$$-NH_2 < -OR < -F$$

$$(2)$$
 - NR₂ < - OR < - F

(3)
$$-NH_2 > -OR > -F$$

SPACE FOR ROUGH WORK

ionic compound. If the ground state electronic configuration of (X) is 1s2 2s2 2p3, the simplest formula for this compound is ON Mg24 Mg34

- (1)Mg₂X₃
- MgX₂ (2)
- Mg₂X (8)
- Mg3X2 (4)

20

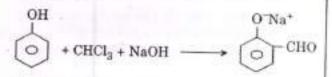
Iron exhibits bcc structure at room temperature. 161. Above 900°C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900°C (assuming molar mass and atomic radii of iron remains constant with temperature) 13 MTM-

10		da - min
(1)	$\frac{\sqrt{3}}{\sqrt{2}}$	$d_1 = \frac{2}{4}$
(2)	$\frac{4\sqrt{3}}{3\sqrt{2}}$	$\frac{d_1}{d_2} = \frac{1}{2}$
(3)	$\frac{3\sqrt{3}}{4\sqrt{2}}$	
(4)	$\frac{1}{2}$	

162. Which one is a wrong statement ?

- Total orbital angular momentum of electron (1)in 's' orbital is equal to zero.
- An orbital is designated by three quantum (2)numbers while an electron in an atom is designated by four quantum numbers.

The electronic configuration of N atom is


$1s^2$	$2s^2$			$2p_z^1$
† ↓	↑ ↓	1	1	Ļ

(4) The value of m for d_2 is zero.

163. Consider the following species :

CN⁺, CN⁻, NO and CN Which one of these will have the highest bond order ? (1) NO 2.5 OF CN-3 (3) 4 CN+ (4) 6 CN

164. In the reaction

the electrophile involved is

- (1) dichloromethyl cation (CHCl₂)
- (2) formyl cation (CHO)
- (3) dichloromethyl anion (CHCl₂)
- (4) dichlorocarbene (:CCl2)
- 165. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of intramolecular H-bonding
 - (2) formation of carboxylate ion $U_{1}^{\mu} \zeta_{-0}^{\nu}$
 - (3) more extensive association of carboxylic acid via van der Waals force of attraction
 - (4) formation of intermolecular H-bonding

166. Compound A, C₈H₁₀O, is found to react with NaOI (produced by reacting Y with NaOH) and yields a <u>yellow precipitate with characteristic</u> <u>smell.</u>, 0-GHC

A and Y are respectively

- (1) $H_3C CH_2 OH and I_2$
- (2) \bigcirc CH₂ CH₂ OH and I₂
- (3) $(CH CH_3 \text{ and } I_2$ OH

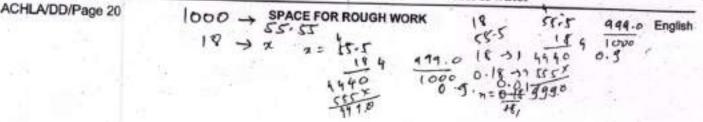
4)
$$CH_3 \rightarrow OH \text{ and } I_2$$

- 167. The correct difference between first- and second-order reactions is that
 - the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
 - (2) the half-life of a first-order reaction does not depend on [A]₀; the half-life of a second-order reaction does depend on [A]₀
 - (3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
 - the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
- 168. Among CaH₂, BeH₂, BaH₂, the order of ionic character is
 - (1) BeH₂ < CaH₂ < BaH₂
 - (2) CaH₂ < BeH₂ < BaH₂
 - (3) BeH₂ < BaH₂ < CaH₂
 - (4) BaH₂ < BeH₂ < CaH₂
- 169. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

$$\begin{array}{c} \operatorname{BrO}_{4}^{-} \xrightarrow{1.82 \text{ V}} \operatorname{BrO}_{3}^{-} \xrightarrow{1.5 \text{ V}} \operatorname{HBrO}_{4}^{-1} \xrightarrow{1.5 \text{ V}} \operatorname{HBrO}_{4}^{-1} \xrightarrow{1.1 \text{ V}} \operatorname$$

Then the species undergoing disproportionation is

- (1) BrO₂
- (2) BrO₄
- (3) Br₂
- (4) HBrO


170. In which case is the number of molecules of water maximum?
1000 -+ trout

(1) 18 mL of water → \ \ > - +

(2) 0.18 g of water $\rightarrow 0.01 \text{ mel}$ q = 1.9 rsr.37

(3) 0-00224 L of water vapours at 1 atm and 273 K 0.000

(4) 10⁻³ mol of water

+ NAOT.

171.	Regarding cross-linked or network polymers,	176. For the redox reaction			
	which of the following statements is <i>incorrect</i> ?	$MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$			
	 They contain covalent bonds between various linear polymer chains. 	the correct coefficients of the reactants for the balanced equation are			
	(2) They are formed from bi- and tri-functional monomers.	$MnO_4^ C_2O_4^{2-}$ H [*]			
	(3) Examples are bakelite and melamine.				
	(4) They contain strong covalent bonds in their	(1) 16 5 2 (2) 2 5 16			
	polymer chains.	(3) 2 16 5			
172.	Nitration of aniline in strong acidic medium also gives m-nitroaniline because	(4) 5 16 2			
	 In spite of substituents nitro group always goes to only m-position. 	177. The correction factor 'a' to the ideal gas equation corresponds to			
	(2)/In electrophilic substitution reactions	 density of the gas molecules 			
	amino group is meta directive.	(2) volume of the gas molecules			
	(3) In absence of substituents nitro group always goes to m-position.	 (3) electric field present between the gas molecules 			
	(4) In acidic (strong) medium aniline is present as anilinium ion.	(4) forces of attraction between the gas molecules			
173.	Which of the following oxides is most acidic in nature?	178. Which one of the following conditions will favour maximum formation of the product in the			
	(1) MgO	reaction,			
	(2) BeO	$A_2(g) + B_2(g) \rightleftharpoons X_2(g) \Delta_r H = -X kJ$?			
	(3) BaO	(1) Low temperature and high pressure			
	(4) CaO	(2) Low temperature and low pressure			
174.	The difference between amylose and amylopectin	(3) High temperature and high pressure			
	is	(4) High temperature and low pressure			
	(1) Amylopectin have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \alpha$ -linkage	179. The bond dissociation energies of λ_2 , λ_2 and λ_1			
	(2) Amylose have $1 \rightarrow 4$ α -linkage and $1 \rightarrow 6 \beta$ -linkage	of XY is - 200 kJ mol ⁻¹ . The bond dissociation energy of X ₂ will be $\chi_2 \rightarrow \chi + \chi$ 1 = 2			
	(3) Amylopectin have $1 \rightarrow 4$ α -linkage and	energy of A2 will be F2			
	$1 \rightarrow 6 \beta$ -linkage	V1 200 NO 1101 10			
	(4) Amylose is made up of glucose and	(2) 100 kJ mol^{-1} $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$			
	galactose (204% coch	(3) 800 kJ mol ⁻¹ $\frac{1}{2}$ $\chi_2 + \frac{1}{2}$ $\chi_2 \rightarrow \chi_1 + \frac{1}{2}$ $\chi_2 + \frac{1}{2}$			
175.	A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. H ₂ SO ₄ . The evolved	(4) 400 kJ mol ⁻¹ $\frac{100-1}{2+0.5}$			
4	gaseous mixture is passed through KOH pellets.	180. When initial concentration of the reactant is			
	Weight (in g) of the remaining product at STP	doubled, the half-life period of a zero order reaction $4_{1/2} = \frac{A_0 - A_1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$			
	will be H coon + c2 nicy the 302+	4 (1) is halved $U_2 = \frac{1}{k} + \frac{1}{2} + \frac{1}{2}$			
	(1) 1.4 46A-1C-gn 4 1-gn	$\begin{array}{c} (1) \text{is harved} \\ (2) \text{is doubled} \\ \end{array} \qquad \qquad$			
	(2) 3.0 (1) Fran	(3) is tripled The stel 1.5			
	(3) 2.8	(4) remains unchanged $\frac{1}{1} = A_1$			
	(4) 4.4	1. 1. 1.			
ACH	ILA/DD/Page 21 SPACE FOR	ROUGH WORK 46-34 +1 = 1 English			
	12 22	10 45 1.37			
	2 69	2-3 +2-2ri			
	teb ab	2.1			

10

5.0

BOOKLET CODE - ACHLA (DD)

BOOKLET CODE - ACHLA (DD)						
Q.No. Answer	Q.No. Answer	Q.No. Answer	Q.No. Answer			
1.(2)	46. (1)	91. (1)	136. (3)			
2. (1)	47. (2)	92. (1)	137. (3)			
3. (1)	48. (1)	93. (2)	138. (2)			
4. (1)	49. (3)	94. (2)	139. (4)			
5. (2)	50. (4)	95. (2)	140. (1)			
6. (2)	51. (3)	96. (4)	141. (3)			
7. (1)	52. (2)	97. (4)	142. (4)			
8. (1)	53. (2)	98. (4)	143. (4)			
9. (1)	54. (1)	99. (1)	144. (1)			
10. (1)	55. (2)	100. (4)	145. (1)			
11. (2)	56. (4)	101. (4)	146. (4)			
12. (4)	57. (2)	102. (1)	147. (3)			
13. (2)	58. (3)	103. (2)	148. (1)			
14. (4)	59. (1)	104. (2)	149. (1)			
15. (4)	60. (2)	105. (4)	150. (1)			
16. (1)	61. (3)	106. (1)	151. (2)			
17. (2)	62. (1)	107. (2)	152. (2)			
18. (4)	63. (1)	108. (3)	153. (4)			
19. (4)	64. (4)	109. (4)	154. (1)			
20. (2)	65. (1)	110. (4)	155. (4)			
21. (4)	66. (1)	111. (1)	156. (4)			
22. (4)	67. (2)	112. (3)	157. (2)			
23. (1)	68. (4)	113. (2)	158. (3)			
24. (1)	69. (2)	114. (2)	159. (1)*			
25. (2)	70. (4)	115. (4)	160. (4)			
26. (1)	71. (4)	116. (2)	161. (3)			
27. (2)	72. (4)	117. (1)	162. (3)			
28. (2)	73. (2)	118. (4)	163. (2)			
29. (3)	74. (4)	119. (1)	164. (4)			
30. (2)	75. (1)	120. (1)	165. (4)			
31. (2)	76. (3)	121. (2)	166. (3)			
32. (2)	77. (3)	122. (2)	167. (2)			
33. (4)	78. (2)	123. (1)	168. (1)			
34. (3)	79. (4)	124. (3)	169. (4)			
35. (4)	80. (1)	125. (4)	170. (1)			
36. (1)	81. (4)	126. (3)	171. (4)			
37. (1)	82. (4)	127. (4)	172. (4)			
38. (3)	83. (2)	128. (1)	173. (2)			
39. (3)	84. (1)	129. (2)	174. (1)			
40. (2)	85. (3)	130. (3)	175. (3)			
41. (1)	86. (4)	131. (3)	176. (2)			
42. (4)	87. (3)	132. (4)	177. (4)			
43. (2)	88. (1)	132. (4)	178. (1)			
44. (2)	89. (1)	133. (1) 134. (2)	179. (3)			
45. (4)	90. (2)	135. (1)	180. (2)			
TJ·(T)	<i>70. (2)</i>	155. (1)	100. (2)			