Head carefully the Instructions on the Back Cover of this Test Booklet.
Important Instructions :

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on Side-1 and Side-2 carefully with blue/black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and this Test Booklet contains $\mathbf{1 8 0}$ questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet is KK. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
8. Use of white fluid for correction is not permissible on the Answer Sheet.
9. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are $\mathrm{K}_{\mathrm{A}}, \mathrm{K}_{\mathrm{B}}$ and K_{C}, respectively. AC is the major axis and SB is perpendicular to AC at the position of the Sun S as shown in the figure. Then

(1) $\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{C}}$.
(2) $\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{C}}$
(3) $\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}$
(4) $\mathrm{K}_{\mathrm{B}}>\mathrm{K}_{\mathrm{A}}>\mathrm{K}_{\mathrm{C}}$
10. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $\left(\mathrm{K}_{\mathrm{t}}\right)$ as well as rotational kinetic energy $\left(\mathrm{K}_{\mathrm{T}}\right)$ simultaneously. The ratio $\mathrm{K}_{\mathrm{t}}:\left(\mathrm{K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{r}}\right)$ for the sphere is
(1) $5: 7$,
(2) $10: 7$
(3) $7: 10$
(4) $2: 5$
11. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere ?
(1) Moment of inertia
(2) Rotational kinetic energy
(3) Angular velocity
(4) Angular momentum.

If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct ?
(1) Walking on the ground would become more difficult.
(2) Time period of a simple pendulum on the Earth would decrease.
(3) Raindrops will fall faster.
(4) 'g' on the Earth will not change.

A toy car with charge q moves on a frictionless horizontal plane surface, under the influence of a uniform electric field \vec{E}. Due to the force $q \vec{E}$, its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively $\quad \approx$
(1) $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
(2) $1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
(3) $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
(4) $1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
6. A block of mass m is placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration ' a ' towards the right. The relation between a and 0 for the block to remain stationary on the wedge is

(1) $a=\frac{g}{\sin \theta}$
(2) $\mathrm{a}=\mathrm{g} \cos \theta$
(3) $\mathrm{a}=\frac{\mathrm{g}}{\operatorname{cosec} \theta}$
(4) $\mathrm{a}=\mathrm{g} \tan \theta \circ$
(7. The moment of the force, $\overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by
(1) $-4 \hat{i}-\hat{j}-8 \hat{k}$
(2) $-7 \hat{i}-8 \hat{j}-4 \hat{k}$
(3) $-8 \hat{i}-4 \hat{j}-7 \hat{k}$
(4) $-7 \hat{i}-4 \hat{j}-8 \hat{k}$

A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and 'zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm , the correct diameter of the ball is
(1) 0.525 cm
(2) 0.053 cm
(3) 0.521 cm
(4) 0.529 cm
9. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

(1) $\frac{-2}{3}$
(2) $\frac{1}{3}$
(3) $\frac{2}{5}$
(4) $\frac{2}{7}$
10. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is
(1) 8 cm .
(2) 12.5 cm
(3) $13 \cdot 2 \mathrm{~cm}$
(4) 16 cm
(11) At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given:
Mass of oxygen molecule (m) $=2.76 \times 10^{-26} \mathrm{~kg}$
Boltzmann's constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$)
(1) $8.360 \times 10^{4} \mathrm{~K}$
(2) $5.016 \times 10^{4} \mathrm{~K}$

(3) $2.508 \times 10^{4} \mathrm{~K}$
(4) $1.254 \times 10^{4} \mathrm{~K}$
(22. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
$\begin{array}{ll}\text { (1) } & 20 \% \\ \text { (2) } & 6 \cdot 25 \% \\ \text { (3) } & 26 \cdot 8 \% \\ \text { (4) } & 12.5 \%\end{array}$
13. A carbon resistor of $(47 \pm 4 \cdot 7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
(1) Yellow - Violet - Orange - Silver
(2) Yellow - Green - Violet - Gold
(3) Violet - Yellow - Orange - Silver
(4) yGreen - Orange - Violet - Gold
14. A set of ' n ' equal resistors, of value ' R ' each, are connected in series to a battery of emf ' E ' and internal resistance ' R '. The current drawn is I. Now, the ' n ' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' n ' is
(1) 11
(2) 20
(3) 10°
(4) 9
15. A battery consists of a variable number ' n ' of identical cells (having internal resistance ' r ' each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?
(1)

(2)

(3)

(4)

HLAAC/KK/Page 3

16. An em wave is propagating in a medium with a velocity $\vec{V}=V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along
(1) $+z$ direction

(2) $-y$ direction
(3) $-z$ direction
(4) $-x$ direction
17. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
(1) 45°
(2) 30°
(3) 60°
(4) zero
18. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
(1) 36 cm away from the mirror
(2) 30 cm towards the mirror
(3) 30 cm away from the mirror
(4) 36 cm towards the mirror
19. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance
(1) 138.88 H
(2) 1.389 H
(3) 0.138 H
(4) 13.89 H
20. An electron of mass m with an initial velocity $\overrightarrow{\mathrm{V}}=\mathrm{V}_{0} \hat{\mathrm{i}}\left(\mathrm{V}_{0}>0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{i}}\left(\mathrm{E}_{0}=\right.$ constant $\left.>0\right)$ at $\mathrm{t}=0$. If λ_{0} is its de-Broglie wavelength initially, then its
de-Broglie wavelength at time t is
(1) $\lambda_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}_{0}} \mathrm{t}\right)$

(2) $\lambda_{0} t$
$\lambda=\frac{h}{f}$
(3) $\left.\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}}{\mathrm{mV}} \mathrm{t}\right.} \mathrm{t}\right) \quad$.
(4) λ_{0}
21. For a radioactive material, half-life is 10 minutes. If initially there are 600 number onuclei, the time taken (in minutes) for the disintegration of 450 nuclei is
(1) 10
(2) 30
(3) $=20$,
(4) 15
22. The ratio of kinetic energy to the total energy o an electron in a Bohr orbit of the hydrogen atom is
(1) $1:-1$,
(2) $2:-1$
(3) $1: 1$
(4) $1:-2$
23. When the light of frequency $2 v_{0}$ (where $v_{0} \mathrm{i}$ threshold frequency), is incident on a meta plate, the maximum velocity of electrons emitter is v_{1}. When the frequency of the inciden radiation is increased to $5 v_{0}$, the maximum velocity of electrons emitted from the same plat is v_{2}. The ratio of v_{1} to v_{2} is
(1) $1: 4$
(2) $4: 1$
(3) $1: 2$
(4) $2: 1$
24. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence ' i ', it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?
(1) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
(2) $\mathrm{i}=\sin ^{-1}\left(\frac{1}{\mu}\right)$
(3) Reflected light is polarised with its electric vector parallel to the plane of incidence
(4) $\mathrm{i}=\tan ^{-1}\left(\frac{1}{\mu}\right)$
25. An astronomical refracting telescope will have large angular magnification and high angular resclution, when it has an objective lens of
(1) large focal length and small diameter
(2) large focal length and large diameter
(3) small focal length and large diameter
(4) small focal length and small diameter
26. In Young's double slit experiment the separation d between the slits is 2 mm , the wavelength λ of the light used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the fringes is $0 \cdot 20^{\circ}$. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
(1) 1.9 mm
(2) 2.1 mm .
(3) 1.8 mm
(4) 1.7 mm
27. In the circuit shown in the figure, the input voltage V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and β are given by

(1) $\mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=200$
(2) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=250$
(3) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta=250$
(4) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=125$
28. In a p-n junction diode, change in temperature due to heating
(1) affects only forward resistance
(2) does not affect resistance of p-n junction
(3) affects only reverse resistance
(4) affects the overall V - I characteristics of pen junction
29. 'In the combination of the following gates the output Y can be written in terms of inputs A and B as

(1) $\mathrm{A} \cdot \overline{\mathrm{B}}+\overline{\mathrm{A}} \cdot \mathrm{B}$.
(2) $\overline{\mathrm{A} \cdot \mathrm{B}}+\mathrm{A} \cdot \mathrm{B}$
(3) $\overline{\mathrm{A} \cdot \mathrm{B}}$
(4) $\overline{\mathrm{A}+\mathrm{B}}$

HLAAC/KKPage 5
$\begin{aligned} & \text { SAC/KKPage } 5 \\ & E=-k\end{aligned} d=2 \quad \omega_{1}=\frac{\lambda D}{d} \frac{\omega_{1}}{\omega_{2}}=\frac{\lambda_{1} D_{1}}{d_{1}} \times \frac{d_{2}}{y_{2} D_{2}} \Rightarrow \frac{\delta d_{0}}{0.20}=\frac{x}{2} \Rightarrow$
English

A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced $\overline{\text { at } 20} \mathrm{~cm}$ and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is
(1) $339 \mathrm{~m} / \mathrm{s}$
(2) $350 \mathrm{~m} / \mathrm{s}$
(3) $330 \mathrm{~m} / \mathrm{s}$
(4) $300 \mathrm{~m} / \mathrm{s}$
31. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
(1) linearly proportional to the distance between the plates.
(2) proportional to the square root of the distance between the plates.
(3) independent of the distance between the plates.
(4) inversely proportional to the distance between the plates.
(32. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E . The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
(1) 5 times greater
(2) 10 times greater
(3) smaller

(4) equal
33. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} / \mathrm{s}^{2}$ at a distance of 5 m from the mean position. The time period of oscillation is
(1) $\pi \mathrm{s}$
(2) 2 s
(3) $2 \pi \mathrm{~s}$
(4) 1 s
34. A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing inf the rod to keep it stationary is
(1) 5.98 A
(2) 14.76 A
(3) $7 \cdot 14 \mathrm{~A}$
(4) 11.32 A

35. Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
(1) 25Ω
(2) 250Ω
(3) $40 \Omega^{-4}$
(4) 500Ω

36. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
(1) the magnetic field
(2) the lattice structure of the material of the rod
(3) the current source
(4) the induced electric field due to the changing magnetic field
37. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and a resistor 50Ω are connected in series across a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is
(1) 0.43 W
(2) 2.74 W
(3) 0.79 W
(4) 1.13 W

38. The power radiated by a black body is P and it radiates maximum energy at wavelength, λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, the power radiated by it becomes $n P$. The value of n is
(1) $\frac{4}{3}$
(2) $\frac{256}{81}$,
(3) $\frac{3}{4}$
(4) $\frac{81}{256}$
39. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3A. If the length of the first wire is increased by Δl on applying a force F , how much force is needed to stretch the second

40. A small sphere of radius ' r ' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
(1) r^{2}
(2) r^{5}
(3) r^{3}
(4) r^{4}
41. A sample of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure ($1.013 \times 10^{5} \mathrm{Nm}^{-2}$) requires 54 cal of heat energy to convert to steam at $100^{\circ} \mathrm{C}$. If the volume. of the steam produced is $167 \cdot 1 \mathrm{cc}$, the change in internal energy of the sample, is
(1) 208.7 J
(2) $42 \cdot 2 \mathrm{~J}$
(3) $104 \cdot 3 \mathrm{~J}$
(4) 84.5 J
42. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $\mathrm{AB}=\mathrm{D}$. The height h is equal to

(1) D
(2) $\frac{7}{5} \mathrm{D}$
(3) $\frac{3}{2} \mathrm{D}$
(4) $\frac{5}{4} \mathrm{D}$

43. Three objects, A : (a solid sphere), B : (a thin circular disk) and C : (a circular ring), each have the same mass M and radius R. They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation
(1) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$
(2) $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$
(3) $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$
(4) $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$
44. A moving block having mass m , collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. When the initial velocity of the lighter block is v , then the value of coefficient of restitution (e) will be
(1) 0.25 *
(2) 0.8
(3) 0.5
(4) 0.4
45. Which one of the following statements is incorrect?
(1) Limiting value of static friction is directly proportional to normal reaction.
(2) Frictional force opposes the relative motion.
(3) Rolling friction is smaller than sliding friction.
(4) Coefficient of sliding friction has dimensions of length. .

46. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code :

	Co^{3+}	i.	$\sqrt{8}$ B.M.	
a.	Cr^{3+}	Ai.	$\sqrt{35}$ B.M.	
c.	Fe^{3+}	iii.	$\sqrt{3}$	B.M.
d.	Ni^{2+}	iv.	$\sqrt{24}$ B.M.	
		v.	$\sqrt{15}$	B.M.

	a	b	c	d
(1)	i	ii	iii	iv
(2)	iv	i	ii	iii
(3)	iv	v	ii	i
(4)	iii	v	i	ii

47. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) mononuclear
(2) trinuclear
(3) tetranuclear
(4) dinuclear $_{2}$
48. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]$ is
(1) Coordination isomerism
(2) Ionization isomerism
(3) Geometrical isomerism
(4) Linkage isomerism
49. Which one of the following ions exhibits $\mathrm{d}-\mathrm{d}$ transition and paramagnetism as well ?
(1) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(2) MnO_{4}^{-}
(3) CrO_{4}^{2-}
(4) MnO_{4}^{2-}
50. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
(1) tetrahedral geometry and diamagnetic :
(2) square planar geometry and paramagnetic
(3) square planar geometry and diamagnetic
(4) tetrahedral geometry and paramagnetic
51. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
(1) 3.0
(2) 2.8
(3) 1.4
(4) $4 \cdot 4$
52. The difference between amylose and amylopectin is
(1) Amylose have $1 \rightarrow 4 \quad \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
(2) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
(3) Amylopectin have $1 \rightarrow 4 \quad \alpha$-linkage and $1 \rightarrow 6 \alpha$-linkage .
(4) Amylose is made up of glucose and galactose
53. Regarding cross-linked or network polymers, which of the following statements is incorrect ?
(1) They are formed from bi- and tri-functional monomers.
(2) Examples are bakelite and melamine.
(3) They contain covalent bonds between various linear polymer chains.
(4) They contain strong covalent bonds in their polymer chains.
54. Nitration of aniline in strong acidic medium also gives m-nitroaniline because
(1) In electrophilic substitution reactions amino group is meta directive.
(2) In absence of substituents nitro group always goes to m-position.
(3) In spite of substituents nitro group always goes to only m-position.
(4) In acidic (strong) medium aniline is present. as anilinium ion.
55. Which of the following oxides is most acidic in nature?
(1) BeO .
(2) BaO
(3) MgO
(4) CaO
56. In the reaction

the electrophile involved is
(1) formyl cation $(\stackrel{\oplus}{\mathrm{C}} \mathrm{HO}$)
(2) dichloromethyl anion $\left(\stackrel{\ominus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
(3) dichloromethyl cation $\left(\mathrm{CHCl}_{2}\right)$
(4) dichlorocarbene (: CCl_{2}),
57. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) formation of carboxylate ion
(2) more extensive association of carboxylic acid via van der Waals force of attraction
(3) formation of intramolecular H-bonding
(4) formation of intermolecular H-bonding ,
58. Compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yiclds a yellow precipitate with characteristic smell.
A and Y are respectively
(1)

(2)

(3)

(4)

59. The compound A on treatment with Na gives B , and with PCl_{5} gives C . B and C react together to give diethyl ether. A, B and C are in the order
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(4)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}
$$

60. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity ?
(1) NO_{2}
(2) $\mathrm{N}_{2} \mathrm{O}$
(3) $\mathrm{N}_{2} \mathrm{O}_{5}$
(4) NO
61. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(2) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(3) $\mathrm{CH} \equiv \mathrm{CH}$
(4) CH_{4},
62. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions :

$$
\mathrm{C}_{7} \mathrm{H}_{8} \xrightarrow{3 \mathrm{Cl}_{2} / \Delta} \mathrm{A} \xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} \mathrm{~B} \xrightarrow{\mathrm{Zn} / \mathrm{HCl}} \mathrm{C}
$$

The product ' C ' is
(1) o-bromotoluene
(2) 3-bromo-2,4,6-trichlorotoluene
(3) m-bromotoluene
(4) p-bromotoluene ${ }_{0}$
(63.) Which of the following carbocations is expected to be most stable?
(1)

(2)

(3)

(4)

64. Which of the following is correct with respect to $-I$ effect of the substituents? $(\mathrm{R}=$ alkyl $)$
(1) $-\mathrm{NR}_{2}<-\mathrm{OR}<-\mathrm{F}$
(2) $-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
(3) $-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$.
(4) $-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$
65. Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$ from left to right atoms?
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$,
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(3) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
66. Identify the major products P, Q and R in $t]$ following sequence of reactions :

67. Which of the following compounds can form zwitterion?
(1) Acetanilide
(2) Benzoic acid
(3) Aniline
(4) Glycine :
68. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
a. $\quad 60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
b. $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
c. $\quad 75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
d. $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
(1) a
(2) d
(3) b
(4) C
69. On which of the following properties does the coagulating power of an ion depend?
(1) Size of the ion alone
(2) Both magnitude and sign of the charge on the ion
(3) The magnitude of the charge on the ion alone
(4) The sign of charge on the ion alone
(79. Given van der Waals constantor for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively $4 \cdot 17,0 \cdot 244,1 \cdot 36$ and 3.59 , which one of the following gases is most easily liquefied?
(1) H_{2}
(2) O_{2}
(3) NH_{3}
(4) CO_{2}
71. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{gL}^{-1}$ at 298 K . The value of its solubility product (K_{sp}) will be
(Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$ 。
(4) $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
72. The bond dissociation energies of X_{2}, Y_{2} and $X Y$

- are in the ratio of $1: 0.5: 1 . \Delta \mathrm{H}$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
(1) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(3) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

73. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
(1) is doubled .
(2) is tripled
(3) is halved
(4) remains unchanged
74. For the redox reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced equation are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	H^{+}
(1)	2	5	16
(2)	2	16	5
(3)	16	5	2
(4)	5	16	2

75. Which one of the following conditions will favour maximum formation of the product in the reaction,

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g}) \quad \Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{XkJ} ?
$$

(1) Low temperature and low pressure
(2) High temperature and high pressure
(3) Low temperature and high pressure .
(4) High temperature and low pressure
76. The correction factor ' a ' to the ideal gas equation corresponds to
(1) volume of the gas molecules
(2) electric field present between the gas molecules
(3) density of the gas molecules
(4) forces of attraction between the gas molecules .
77. The correct order of N -compounds in its decreasing order of oxidation states is
(1) $\mathrm{HNO}_{3}, \stackrel{+2}{\mathrm{NO}}, \mathrm{NH}_{4}^{3} \mathrm{Cl}, \mathrm{N}_{2}^{0}$
(2) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(3) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}+$
(4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$.
78. Which one of the following elements is unable to form MF_{6}^{3-} ion ?
(1) Al
(2) $\mathrm{B} \cdot$
(3) Ga
(4) In
79. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
(1) Zn
(2) Mg
(3) Fe
(4) Cu
80. The correct order of atomic radii in group 13 elements is
(1) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
(2) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<\mathrm{In}$
(3) $\mathrm{B}<\mathrm{Al}<\mathrm{In}<\mathrm{Ga}<\mathrm{Tl}$
(4) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$.
81. Which of the following statements is not true for halogens?
(1) All are oxidizing agents
(2) All but fluorine show positive oxidation states.
(3) All form monobasic oxyacids. ,
(4) Chlorine has the highest electron-gain enthalpy./
82. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is
(1) two .
(2) four
(3) one
(4) three
83. The correct difference between first- and second-order reactions is that
(1) the half-life of a first-order reaction does not depend on $[A]_{0}$; the half-life of a second-order reaction does depend on $[\mathrm{A}]_{0}$
(2) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed
(3) the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
(4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
84. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
(1) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
(2) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
(3) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$.
(4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$
85. In which case is the number of molecules of water maximum?
(1) 0.18 g of water
(2) 0.00224 L of water vapours at 1 atm and 273 K
(3) 18 mL of water
(4) $10^{-3} \mathrm{~mol}$ of water
86. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below :

Then the species undergoing disproportionation is
(1) BrO_{4}^{-}
(2) Br_{2}
(3) BrO_{3}^{-}
(4) HBrO
87. Cunsider the following species :
${ }^{7} \mathrm{CN}^{+}, \stackrel{3}{\mathrm{CN}}, \mathrm{NO}$ and CN
Which one of these will have the highest bond order?
(1) CN^{-}
(2) CN^{+}
(3) NO
(4) CN
88. Which one is a wrong statement?
(1) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
(2) The electronic configuration of N atom is

(3) Total orbital angular momentum of electron in 's' orbital is equal to zero.
(4) The value of m for d_{z} is zero.
89. Iron exhibits bec structure at room temperature.

D Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
(1) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
(2) $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
(3) $\frac{\sqrt{3}}{\sqrt{2}}$
(4) $\frac{1}{2}$
90. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
(1) MgX_{2}
(2) $\mathrm{Mg}_{2} \mathrm{X}$
(3) $\mathrm{Mg}_{2} \mathrm{X}_{3}$
(4) $\mathrm{Mg}_{3} \mathrm{X}_{2}$.
91. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
(1) $-80^{\circ} \mathrm{C}$
(2) $-196^{\circ} \mathrm{C}$,
(3) $-120^{\circ} \mathrm{C}$
(4) $-160^{\circ} \mathrm{C}$
92. Oxygen is not produced during photosynthesis by
(1) Nostoc
(2) Cycas
(3) Green sulphur bacteria .
(4) Chara
93. What is the role of NAD^{+}in cellular respiration?
(1) It functions as an electron carrier.
(2) It is a nucleotide source for ATP synthesis.
(3) It functions as an enzyme.
(4) It is the final electron acceptor for anaerobic respiration.*
94. Which of the following elements is responsible for maintaining turgor in cells?
(1) Sodium
(2) Potassium.
(3) Magnesium
(4) Calcium
95. Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?
(1) Yucca.
(2) Banana
(3) Hydrilla
(4) Viola
96. In which of the following forms is iron absorbed by plants?
(1) Ferrous
(2) Free element
(3) Ferric .
(4) Both ferric and ferrous
97. Double fertilization is
(1) Fusion of one male gamete with two polar nuclei
(2) Fusion of two male gametes with one egg
(3) Fusion of two male gametes of a pollen tube with two different eggs
(4) Syngamy and triple fusion *
98. A 'new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to
(1) Sharbati Sonora
(2) Lerma Rojo
(3) $\mathrm{Co}-667$
(4) Basmati .
(99. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
(1) Council for Scientific and Industrial Research (CSIR)
(2) Research Committee on Genetic
(3) Indian Council of Medical Research (ICMR)
(4) Genetic Engineering Appraisal Committee (GEAC)
100. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?
(1) Ti plasmid
(2) λ phage
(3) Retrovirus.
(4) pBR 322
101. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
(1) Biopiracy .
(2) Biodegradation
(3) Bio-infringement
(4) Bioexploitation
102. The correct order of steps in Polymerase Chain Reaction (PCR) is
(1) Annealing, Extension, Denaturation
(2) Denaturation, Extension, Annealing
(3) Extension, Denaturation, Annealing
(4) Denaturation, Annealing, Extension .
103. Select the correct match:
(1) $\mathrm{F}_{2} \times$ Recessive parent - Dihybrid cross $\underset{ }{ }$
2) T.H. Morgan \quad Transduction
(3) Ribozyme
(4) G. Mendel - Transformation
(1) the physical space where an organism lives
(2) the range of temperature that the organism needs to live
(3) all the biological factors in the organism's environment
(4) the functional role played by the organism where it lives
105. Which of the following is a secondary pollutant?
(1) CO_{2}
(2) SO_{2}
(3) CO
(4) O_{3},
106. Natality refers to
(1) Birth rate *
(2) Number of individuals leaving the habitat
(3) Death rate
(4) Number of individuals entering a habitat
107. World Ozone Day is celebrated on
(1) $21^{\text {st }}$ April
(2) $16^{\text {th }}$ September
(3) $5^{\text {th }}$ June
(4) $22^{\text {nd }}$ April.
108. What type of ecological pyramid would obtained with the following data? Secondary consumer : 120 g Primary consumer: 60 g Primary producer: 10 g
(1) Pyramid of energy
(2) Upright pyramid of numbers
(3) Inverted pyramid of biomass .
(4) Upright pyramid of biomass
109. In stratosphere, which of the following elem acts as a catalyst in degradation of ozone release of molecular oxygen ?
(1) Cl .
(2) Fe
(3) Carbon
(4) Oxygen
(10.) Which of the following pairs is wrongly matched?
(1) ABO blood grouping
: Co-dominance
(2) XO type sex
: Grasshopper determination
(3) Starch synthesis in pea : Multiple alleles
(4) T.H. Morgan :- Linkage \checkmark
111. Select the correct statement:
(1) Punnett square was developed by a British scientist.
(2) Spliceosomes take part in translation.
(3) Franklin Stahl coined the term "linkage".
(4) Transduction was discovered by S. Altman.
(12.) The experimental proof for semiconservative replication of DNA was first shown in a
(1) Bacterium .
(2) Plant
(3) Fungus
(4) Virus
113. Select the correct match :
(1) Alfred Hershey and - TMV Martha Chase
(2) Matthew Meselson - Pisum sativum and F. Stahl .
(3) Alec Jeffreys - Streptococcus pneumoniae
(4) Francois Jacob and - Lac operon Jacques Monod
114. Offsets are produced by
(1) Mitotic divisions
(2) Parthenocarpy,
(3) Meiotic divisions
(4) Parthenogenesis
115. Which of the following flowers only once in its life-time?
(1) Jackfruit
(2) Mango
(3) Bamboo species
(4) Papaya
116. Which of the following has proved helpful in preserving pollen as fossils ?
(1) Cellulosic intine
(2) Oil content
(3) Pollenkitt
(4) Sporopollenin a
117. Secondary xylem and phloem in dicot stem are produced by
(1) Vascular cambium-
(2) Phellogen
(3) Apical meristems
(4) Axillary meristems
118. Plants having little or no secondary growth are
(1) Deciduous angiosperms
(2) Conifers
(3) Grasses ,
(4) Cycads
119. Sweet potato is a modified
(1) Adventitious root
(2) Tap root *
(3) Stem
(4) Rhizome
120. Pneumatophores occur in
(1) Free-floating hydrophytes
(2) Carnivorous plants
(3) Halophytes.
(4) Submerged hydrophytes
121. Casparian strips occur in
(1) Pericycle
(2) Cortex,
(3) Epidermis
(4) Endodermis,
122. Which of the following statements is correct ?
(1) Selaginella is heterosporous, while Salvinia is homosporous. \times
(2) Horsetails are gymnosperms. X
(3) Ovules are not enclosed by ovary wall in gymnosperms. *
(4) Stems are usually unbranched in both Cycas and Cedrus.
123. Select the wrong statement:
(1) Mushrooms belong to Basidiomycetes.
(2) Pseudopodia are locomotory and feeding structures in Sporozoans.
(3) Cell wall is present in members of Fungi and Plantae.
(4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera.
124. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

a. Herbarium
b. Key *
c. Museum

Column II

i. It is a place having a collection of preserved plants and animals. ii. A list that enumerates methodically all the species found in an area with brief description aiding identification. Is a place where dried and pressed plant specimens mounted on sheets are kept. .
d. Catalogue iv. A booklet containing a list of characters and their alternates which are helpful in identification of various taxa.

	a	b	c	d
(1)	iii	ii	i	iv
(2)	ii	iv	iii	i
(3)	i	iv	iii	ii
(4)	iii	iv	i	ii .

125. After karyogamy followed by meiosis, spores are produced exogenously in
(1) Alternaria \times
(2) Agaricus B
(3) Neurospora ${ }^{\text {A }}$
(4) Saccharomyces
126. Winged pollen grains are present in
(1) Cycas
(2) Mango
(3) Mustard
(4) Minus
127. Which one is wrongly matched?
(1) Biflagellate zoospores - Brown algae
(2) Gemma cups - Marchantia /
(3) Uniflagellate gametes - Polysiphonia β Sown
(4) Unicellular organism - Chlorella,
128. The two functional groups, characteristic of sugars are
(1) carbonyl and methyl

(2) carbonyl and phosphate -On
(3) hydroxyl and methyl
(4) carbonyl and hydroxyl -
129. Which of the following is not a product of light reaction of photosynthesis?
(1) NADH
(2) NADPH *
(3) ATP
(4) Oxygen
130. Which among the following is not a prokaryote?
(1) Mycobacterium
(2) Nostoc
(3) Saccharomyces
(4) Oscillatoria
131. Stomatal movement is not affected by
(1) Light
(2) O_{2} concentration,
(3) Temperature
(4) CO_{2} concentration
132. The Golgi complex participates in
(1) Formation of secretory vesicles -
(2) Respiration in bacteria
(3) Fatty acid breakdown
(4) Activation of amino acid
133. Which of the following is true for nucleolus?
(1) It is a membrane-bound structure.
(2) It takes part in spindle formation.
(3) Larger nucleoli are present in dividing cells,
(4) It is a site for active ribosomal RNA synthesis.
134. The stage during which separation of the paired homologous chromosomes begins is
(1) Diplotene
(2) Diakinesis -
(3) Pachytene
(4) Zygotene
135. Stomata in grass leaf are
(1) Kidney shaped
(2) Rectangular
(3) Dumb-bell shaped,
(4) Barrel shaped
136. Nissl bodies are mainly composed of
(1) DNA and RNA
(2) Nucleic acids and SER
(3) Proteins and lipids
(4) Free ribosomes and RER,
137. Which of these statements is incorrect?
(1) Glycolysis occurs in cytosol.
(2) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
(3) Enzymes of TCA cycle are present in mitochondrial matrix.
(4) Oxidative phosphorylation takes place in outer mitochondrial membrane. .
138. Which of the following terms describe human dentition?
(1) Thecodont, Diphyodont, Heterodont -
(2) Pleurodont, Monophyodont, Homodont
(3) Thecodont, Diphyodont, Homodont
(4) Pleurodont, Diphyodont, Heterodont x
(139.) Select the incorrect match:
(1) Allosomes

- Sex chromosomes
(2) Submetacentric - L-shaped chromososmes chromosomes
(3) Lampbrush - Diplotene bivalents chromosomes
(4) Polytene - Oocytes of amphibians chromosomes
(140.) Which of the following events does not occur in rough endoplasmic reticulum? ? LS
(1) Protein glycosylation
(2) Cleavage of signal peptide
(3) Protein folding
(4) Phospholipid synthesis

141. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
(1) Polyhedral bodies
(2) Plastidome
(3) Polysome .
(4) Nucleosome
142. All of the following are part of an operon except
(1) structural genes
(2) an enhancer .
(3) an operator
(4) a promoter
143. A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by
(1) Only sons
(2) Only grandchildren

$$
x^{c} x \quad x y
$$

(3) Only daughters
(4) Both sons and daughters .
144. According to Hugo de Vries, the mechanism of evolution is
(1) Saltation.
(2) Phenotypic variations
(3) Multiple step mutations
(4) Minor mutations
145. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresporiding sequence of the transcribed mRNA?
(1) UGGTUTCGCAT
(2) ACCUAUGCGAU
(3) AGGUAUCGCAU
(4) UCCAUAGCGUA
146. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

a. Proliferative Phase i
b. Secretory Phase
c. Menstruation

1. Breakdown of endometrial lining

Column II

ii. Follicular Phase
iii. Luteal Phase

	a	b	c
(1)	i	iii	ii
(2)	ii	iii	i
(3)	iii	ii	i
(4)	iii	i	ii

147. Which one of the following population interactions is widely used in medical science for the production of antibiotics ?
(1) Mutualism
(2) Parasitism
(3) Commensalism
(4) Amensalism .
148. All of the following are included in 'Ex-situ conservation' except
(1) Sacred groves -
(2) Botanical gardens
(3) Wildlife safari parks
(4) Seed banks
149. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

a. Eutrophication
b. Sanitary landfill
c. Snow blindness
-B radiation
ii. Deforestation
iii. Nutrient enrichment
d. Jhum cultivation iv. Waste disposal

	a	b	c	d
(1)	i	iii	iv	ii
(2)	iii	iv	i	ii 。
(3)	ii	i	iii	iv
(4)	i	ii	iv	iii

150. In a growing population of a country,
(1) reproductive individuals are less than the post-reproductive individuals.
(2) reproductive and pre-reproductive individuals are equal in number.
(3) pre-reproductive individuals are more than the reproductive individuals.*
(4) pre-reproductive individuals are less than the reproductive individuals.
151. Which part of poppy plant is used to obtain the drug "Smack"?
(1) Latex .
(2) Roots
(3) Flowers
(4) Leaves
152. Among the following sets of examples for divergent evolution, select the incorrect option :
(1) Heart of bat, man and cheetah
(2) Brain of bat, man and cheetah
(3) Forelimbs of man, bat and cheetah
(4) Eye of octopus, bat and man .
153. Which of the following is not an autoimmune disease?
(1) Rheumatoid arthritis
(2) Alzheimer's disease. Low acety Acholine
(3) Psoriasis
(4) Vitiligo
154. In which disease does mosquito transmitted pathogen cause chronic inflammation of ymphatic vessels?
(1) Ascariasis
(2) Ringworm disease
(3) Elephantiasis.
(4) Amoebiasis
155. Conversion of milk to curd improves its nutritional value by increasing the amount of
(1) Vitamin A
(2) Vitamin B_{12}.
(3) Vitamin D
(4) Vitamin E
156. The similarity of bone structure in the forelimbs of many vertebrates is an example of
(1) Analogy
(2) Convergent evolution
(3) Homology :
(4) Adaptive radiation
157. Which of the following characteristics represent 'Inheritance of blood groups' in humans?
a. Dominance
b. Co-dominance,
c. Multiple allele
d. Incomplete dominance
e. Polygenic inheritance,
(1) a, b and c
(2) b, d and e
(3) b, c and e .
(4) a, c and e
158. Hormones secreted by the placenta to maintain pregnancy are
(1) hCG, hPL, estrogens, relaxin, oxytocin
(2) hCG, hPL, progestogens, estrogens .
(3) hCG, hPL, progestogens, prolactin
(4) hCG, progestogens; estrogens, glucocorticoids 7
159. The contraceptive 'SAHELI'
(1) increases the concentration of estrogen and prevents ovulation in females.
(2) is an IUD.
(3) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
(4) is a post-coital contraceptive.
160. The amnion of mammalian embryo is derived from
(1) endoderm and mesoderm
(2) mesoderm and trophoblast
(3) ectoderm and mesoderm
(4) ectoderm and endoderm
161. The difference between spermiogenesis and spermiation is
Spatid sctem
(1) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
(2) In spermiogenesis spermatozoa from sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed. .
(3) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed,
(4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from sertoli cells into the cavity of seminiferous tubules.
162. Which of the following is an amino acid derived hormone?
(1) Ecdysone
(2) Estradiol
(3) Epinephrine -
(4) Estriol
163. Which of the following structures or regions is incorrectly paired with its function?
(1) Limbic system
(2) Hypothalamus
(3) Medulla oblongata :
controls respiration and cardiovascular reflexes.
(4) Corpus callosum : band of fibers connecting left and right cerebral hemispheres.
164. The transparent lens in the human eye is held in its place by
(1) ligaments attached to the iris
(2) smooth muscles attached to the iris
(3) ligaments attached to the ciliary body .
(4) smooth muscles attached to the ciliary body
165. Which of the following hormones can play a significant role in osteoporosis ?
(1) Progesterone and Aldosterone \bullet
(2) Estrogen and Parathyroid hormone .
(3) Aldosterone and Prolactin \times
(4) Parathyroid hormone and Prolactin $>$
166. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
(1) Increased number of bronchioles; Increased respiratory surface
(2) Increased respiratory surface; Inflammation of bronchioles
(3) Inflammation of bronchioles; Decreased respiratory surface,
(4) Decreased respiratory surface; Inflammation of bronchioles
167. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

Column II
a. Tricuspid valve
i. Between left atrium and left ventricle
b. Bicuspid valve
c. Semilunar valve
ii. Between right ventricle and pulmonary artery
kii. Between right atrium and right ventricle

	a	b	c
(1)	i	iii	ii
(2)	i	ii	iii
(3)	iii	i	ii $_{*}$
(4)	ii	i	iii 2

168. Match the items given in Column I with those in Column II and select the correct option given below :

Column I

Column II

a. Tidal volume i. $2500-3000 \mathrm{~mL}$
b. Inspiratory Resorve
ii. $1100-1200 \mathrm{~mL}$ volume
c. Expiratory Reserve volume
d. Residual volume iv. $1000-1100 \mathrm{~mL}$

	a	b	c	d
(1)	iii	i	iv	ii
(2)	i	iv	ii	iii
(3)	iii	ii	i	iv
(4)	iv	iii	ii	i

169. Which of the following gastric cells indire help in erythropoiesis?
(1) Mucous cells
(2) Goblet cells
(3) Chief cells
(4) Parietal cells,
170. Match the items given in Column I with thos Column II and select the correct option gi below :

Column I

a. Fibrinogen i. Osmotic balance
b. Globulin
c. Albumin iii. Defence mechanis

	a	b	c
(1)	i	ii	iii
(2)	i	iii	ii
(3)	iii	ii	i
(4)	ii	iii	i .

171. Which of the following is an occupatio respiratory disorder?
(1) Silicosis ;
(2) Botulism
(3) Anthracis
(4) Emphysema
172. Calcium is important in skeletal mu: contraction because it
(1) activates the myosin ATPase by binding it.
(2) detaches the myosin head from the ar filament.
(3) binds to troponin to remove the maskin! active sites on actin for myosin.
(4) prevents the formation of bonds betw the myosin cross bridges and the as filament.
173. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Glycosuria
b. Gout
c. Renal calculi
d. Glomerular nephritis

Column II
i. Accumulation of uric acid in joints
ii. Mass of crystallised salts within the kidney
iii. Inflammation in glomeruli
iv. Presence of glucose in urine

	a	b	c	d
(1)	i	ii	iii	iv
(2)	ii	iii	i	iv
(3)	iii	ii	iv	i
(4)	iv	i	ii	iii .

174. Match the items given in Column I with those in Column II and select the correct option given below :

Column I
(Function)

Column II

(Part of Excretory System)
i. Henle's loop
ii. Ureter
b. Concentration of urine
c. Transport of urine
d. Storage of urine
iy. Malpighian corpuscle
v. Proximal convoluted tubule

	a	b	c	d
(1)	iv	i	ii	iii
(2)	v	iv	i	ii
(3)	iv	v	ii	iii
(4)	v	iv	i	iii

175. Which of the following features is used to identify a male cockroach from a female cockroach ?
(1) Presence of caudal styles
(2) Forewings with darker tegmina
(3) Presence of a boat shaped sternum on the $9^{\text {th }}$ abdominal segment
(4) Presence of anal cerci
176. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive system.
(1) Reptilia
(2) Aves•
(3) Amphibia
(4) Osteichthyes
177. Which one of these animals is not a homeotherm?
(1) Chelone .
(2) Camelus \checkmark
(3) Macropus,
(4) Psittacula,
178. Which of the following organisms are known as chief producers in the oceans ?
(1) Diatoms
(2) Cyanobacteria
(3) Dinoflagellates,
(4) Euglenoids
179. Which of the following animals does not undergo metamorphosis?
(1) Tunicate.
(2) Moth
(3) Earthworm ,
(4) Starfish
180. Ciliates differ from all other protozoans in
(1) having a contractile vacuole for removing excess water
(2) using pseudopodia for capturing prey a
(3) using flagella for locomotion \mathcal{X}
(4) having two types of nuclei.

BOOKLET CODE - HLAAC (KK)

Q.No. Answer	Q.No. Answer	Q.No. Answer	Q.No. Answer
1. (1)	46. (3)	91. (2)	136. (4)
2. (1)	47. (1)	92. (3)	137. (4)
3. (4)	48. (3)	93. (1)	138. (1)
4. (4)	49. (4)	94. (2)	139. (4)
5. (1)	50. (1)	95. (1)	140. (4)
6. (4)	51. (2)	96. (3)	141. (3)
7. (4)	52. (3)	97. (4)	142. (2)
8. (4)	53. (4)	98. (4)	143. (4)
9. (3)	54. (4)	99. (4)	144. (1)
10. (3)	55. (1)	100. (3)	145. (3)
11. (1)	56. (4)	101. (1)	146. (2)
12. (3)	57. (4)	102. (4)	147. (4)
13. (1)	58. (2)	103. (3)	148. (1)
14. (3)	59. (4)	104. (4)	149. (2)
15. (3)	60. (3)	105. (4)	150. (3)
16. (1)	61. (4)	106. (1)	151. (1)
17. (1)	62. (3)	107. (2)	152. (4)
18. (1)	63. (2)	108. (3)	153. (2)
19. (4)	64. (3)*	109. (1)	154. (3)
20. (3)	65. (1)	110. (3)	155. (2)
21. (3)	66. (4)	111. (1)	156. (3)
22. (1)	67. (4)	112. (1)	157. (1)
23. (3)	68. (4)	113. (4)	158. (2)
24. (1)	69. (2)	114. (1)	159. (3)
25. (2)	70. (3)	115. (3)	160. (3)
26. (1)	71. (3)	116. (4)	161. (4)
27. (4)	72. (2)	117. (1)	162. (3)
28. (4)	73. (1)	118. (3)	163. (1)
29. (1)	74. (1)	119. (1)	164. (3)
30. (1)	75. (3)	120. (3)	165. (2)
31. (3)	76. (4)	121. (4)	166. (3)
32. (3)	77. (3)	122. (3)	167. (3)
33. (1)	78. (2)	123. (2)	168. (1)
34. (4)	79. (2)	124. (4)	169. (4)
35. (2)	80. (4)	125. (2)	170. (4)
36. (3)	81. (2)	126. (4)	171. (1)
37. (3)	82. (1)	127. (3)	172. (3)
38. (2)	83. (1)	128. (4)	173. (4)
39. (3)	84. (3)	129. (1)	174. (1)
40. (2)	85. (3)	130. (3)	175. (1)
41. (1)	86. (4)	131. (2)	176. (2)
42. (4)	87. (1)	132. (1)	177. (1)
43. (3)	88. (2)	133. (4)	178. (1)
44. (1)	89. (2)	134. (1)	179. (3)
45. (4)	90. (4)	135. (3)	180. (4)

