

# NCG GUIDELINES FOR ENDOMETRIAL CANCER



## **Treatment Algorithm: Endometrial Cancer**





\* TH+ BSO is the minimum standard.

Lymph nodal dissection in patients with high risk features based on pre- or intra-operative assessment

\*\* Table 1: Surgery

| StagelA, G1          | TH BSO <sup>#</sup>                                                                         |
|----------------------|---------------------------------------------------------------------------------------------|
| Stage IA G2/3, IB G1 | TH BSO +/-Pelvic Lymphadenectomy                                                            |
| Stage IB G2/3        | TH BSO pelvic lymphadenectomy +/-paraaortic<br>lymphadenectomy                              |
| Stage II             | TH BSO/Type 2 Radical Hysterectomy & pelvic<br>lymphadenectomy ± paraaortic lymphadenectomy |
| Serous histology     | TH BSO + pelvic and paraaortic lymphadenectomy<br>and infracolic omentectomy                |

<sup>#</sup>Normal appearing ovaries may be preserved in a young patient for fertility preservation after counselling and explaining associated risks.

Fertility preservation: In young patients, disease limited to endometrium, Grade I, endometriod histology, ER/PR Positive, and P53 negative. Counselling for the associated risks is mandatory. A pre-treatment MRI is mandatory to evaluate local extent of disease and status of ovaries. Treatment is done by high dose progesterone with frequent response monitoring at 2-3 monthly interval. The efficacy of progesterone containing IUDs alone is not proven in invasive endometrial cancer.

TH BSO: Total Hysterectomy Bilateral Salpingoophorectomy (Open/ Laparoscopic/ Robotic)

| Risk Group             | Description                                                     |
|------------------------|-----------------------------------------------------------------|
| Low risk               | Stage I endometrioid, grade 1–2, <50% myometrial invasion, LVSI |
|                        | negative                                                        |
| Intermediate risk      | Stage I endometrioid, grade 1–2, ≥50% myometrial invasion, LVSI |
|                        | negative                                                        |
| High-Intermediate risk | Stage I endometrioid, grade 3, <50% myometrial invasion,        |
|                        | regardless of LVSI status                                       |
|                        | Stage I endometrioid, grade 1–2, LVSI unequivocally positive,   |
|                        | regardless of depth of invasion                                 |
| High Risk              | Stage I endometrioid, grade 3, >50% myometrial invasion,        |
|                        | regardless of LVSI status                                       |
|                        | Stage II                                                        |
|                        | Stage III endometrioid, no residual disease                     |
|                        | Non endometrioid (serous or clear cell or undifferentiated      |
|                        | carcinoma, or carcinosarcoma)                                   |
| Advanced               | Stage III residual disease and stage IVA                        |
| Metastatic             | Stage IVB                                                       |

#### Post-operative Risk Group Stratification for Adjuvant Therapy ^^

#### ^^: ESMO-ESGO-ESTRO Consensus Guidelines

| Stage I    | Tumor confined to the corpus uteri                                                  |
|------------|-------------------------------------------------------------------------------------|
| IA         | No or less than half myometrial invasion                                            |
| IB         | Invasion equal to or more than half of the myometrium                               |
| Stage II   | Tumor invades cervical stroma, but does not extend beyond the uterus                |
| Stage III  | Local and/or regional spread of the tumor                                           |
| IIIA       | Tumor invades the serosa of the corpus uteri and/or adnexae#                        |
| IIIB       | Vaginal and/or parametrial involvement#                                             |
| IIIC       | Metastases to pelvic and/or para-aortic lymph nodes#                                |
| IIIC1      | Positive pelvic nodes                                                               |
| IIIC2      | Positive para-aortic lymph nodes with or without positive pelvic lymph nodes        |
| Stage IV   | Tumor invades bladder and/or bowel mucosa, and/or distant metastases                |
| Stage IVA  | Tumor invasion of bladder and/or bowel mucosa                                       |
| Stage IV B | Distant metastases, including intra-abdominal metastases and/or inguinal lymphnodes |

FIGO 2009 Staging for Cancer Endometrium

Each Stage includes GI, G2, or G3 depending upon the histological grade of the tumor.

\*Endocervical glandular involvement alone should be considered as Stage I

*#* Positive cytology has to be reported separately without changing the stage

#### WHO Histological classification

| Type I Histology  | Endometrioid Adenocarcinoma |
|-------------------|-----------------------------|
| Type II Histology | Serous                      |
|                   | Mucinous                    |
|                   | Clear cell                  |
|                   | Carcinosarcoma              |
|                   | Undifferentiated            |



### Inadequate Surgery \*\*\*



\*\*\*Unilateral Salpingo-oophorectomy/ No Salpingo-oophorectomy/Lymph node dissection not done.







<sup>1</sup>: If ER/PR we consider megestrol acetate 160 mg/ day or Aromatase Inhibitor (example letrozole 2.5 mg /day)





#### References

- 1. **Dijkhuizen FP, Brolmann HA, Potters AE, et al**. The accuracy of transvaginal ultrasonography in the diagnosis of endometrial abnormalities. Obstet Gyneco|1996;87:345—9.
- Karlsson B, Granberg S, Wikland M, et al. Transvaginal ultrasonography of the endometrium in womenwith post-menopausal bleeding—a Nordic multicentre study. Am J of ObstetGynecol1995; 172:1488—94.
- Dijkhuizen FP, Mol BW, Brolmann HA &Heintz AP. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia: a meta-analysis. Cancer 2000;89(8):1765—1772. (Level of Evidence: I).
- 4. **Connor JP, Andrews JI, Anderson B, Buller RE**. Computed tomography in endometrial carcinoma. ObstetGynecol 2000; 95:692-696
- 5. HH, Kang S-B, Cho JY et al. Accuracy of MR imaging for the prediction of myometrial invasion of endometrial carcinoma. Gynecol Oncol 2007; 104:654—659.
- 6. Nagar H, Dodds S, McClelland HR et al. The diagnostic accuracy of magnetic resonance imaging in detecting cervical involvement in endometrialcancer.Gyneco|Oncol2006;103:431
- 7. Selman TJ, Mann CH, Zamora J, Khan KS. A systematic review of tests for lymph node status in primary endometrial cancer BMC Women's Health 2008 May 5; 8: 8 (Level of Evidence: 1)
- Creasman WT, Morrow CP, Bundy BN, Homesely HD. Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Cancer Group Study. Cancer 1987; 60:2035-41.
- 9. Ayhan A, Taskiran C, Celik C, Yuce K. The long-term survival of women with surgical Stage II endometrioid type endometrial cancer. Gynecol Oncol 2004 Apr; 93(1): 9-13
- 10. Lee TS, Kim DY, Kim YT, Lee KH et al. Necessity of radical hysterectomy for endometrial cancer patients with cervical invasion. J of Korean Med Sci 2010 Apr; 25(4): 552-6
- 11. Mariani A, Keeney GL, Aletti G, Webb MJ et al. Endometrial carcinoma: para-aortic dissemination Gynecol Oncol 2004 March; 92(3): 833-38
- 12. Mariani A, Dowdy SC, Cilby WA, Haddock MG et al. Efficacy of systematic lymphadenectomy and adjuvant radiotherapy in node-positive endometrial cancer patients Gynecol Oncol 2006 May; 101 (2):191-93
- Mariani A, Dowdy SC, Cilby WA Gostout BS, Jones MB et al Prospective assessment of lymphatic dissemination in endometrial cancer: a paradigm shift in surgical staging Gynecol Oncol 2008 Apr;109(1): 11-8

- 14. **ASTEC study group Kitchener H, SwartAM,et al**. Efficacy of systematic pelvic Lymphadenectomy in endometrial cancer: A randomized study Lancet 2009;373:125-136.
- 15. **BenedittiPanicciP,Basile S, ManeschiF,et al**. Systematic pelvic Lymphadenectomy vs No Lymphadenectomy in early stage endometrial cancer. A randomized controlled trial. J Nat Can|nst.2008;100:1707-1716.
- 16. **Creutzberg CL, van Putten WU, Koper PCM, Jobsen JJ et al**. Surgery and postoperative radiotherapy versus surgery alone for patients with stage 1 endometrial carcinoma: multicentre randomized trial.(PORTEC). Lancet 2000; 355:1404-11 (Level of Evidence: I)
- 17. Nout RA, Creutzberg CL, van Putten WU, Jobsen JJ et al. Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): an open-label, non-inferiority, randomized trial. Lancet 2010; 375:816-23 (Level of Evidence: I)
- Keys HM, Roberts JA, Spirtos NM, Brunetto VL et al. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study. Gynecologic Oncology 92 (2004); 744-751 (Level of Evidence: I)
- 19. Blake P, Swart AM, Orton J et al Adjuvant external beam radiotherapy in the treatment of endometrial cancer (M RC ASTEC and NCIC CTG EN.5randomised trials): pooled trial results, systematic review, and meta-analysis Lancet 2009; 373: 137-46 (Level of Evidence: I)
- 20. Johnson N, Bryant A, MilesTet al. Adjuvant chemotherapy for endometrial cancers after hysterectomy.
  Cochrane Database Syst Rev.; (10): CD003175doi:10.1002/14651858.CD003175.pub2. (Level of Evidence:I)
- 21. Colombo, Nicoletta, et al. "ESMO-ESGO-ESTRO consensus conference on endometrial cancer: diagnosis, treatment and follow-up." *Annals of Oncology* 27.1 (2015): 16-41.