Paediatric Tumors

Liver Mass : Suspected Hepatoblastoma

CT SCAN OF CHEST, ABDOMEN AND PELVIS:

Triphasic CT Scan for the liver and Portal Venous phase scan for chest, abdomen and pelvis has been performed Indication : Suspected liver mass History: Age : Ser AFP: Prior Treatment :

Comparison:

Liver tumor: Mass : Focality : one or more (F0/F1) Presence of calcifications: yes /no Enhancement characteristics : Arterial phase Portal venous phase Equilibrium phase:

Size

Pretext stage :

(Sectors involved and sectors free (liver divided into 4 sectors-left lateral –II/III, left medial-IV, right anterior-V/VIII and right posterior VI/VII):

Caudate lobe- involved or not (C0/C1)

Intra tumoral Bleed or rupture (H0/H1)

IVC RHV MHV LHV Hepatic veins : Vo/V1/V2/V3

PV Main Right branch Left Branch Portal vein : P0/P1/P2

Any extrahepatic extension Infiltration of adjacent organs including diaphragm Any omental / peritoneal nodule Extraheptic Extension: E0/E1/E2

Ascites/peritoneal haemorrhage (H0/H1)

Nodal status (N0/N1 Periportal Retroperitoneal

GB: Spleen Pancreas Kidneys Pelvic organs GIT

Lungs Pleura Mediastinal nodes Heart and great vessels:

Visualized Bones:

Impression : Likely diagnosis: PreText Stage : I II III IV Additional factors F C V P E H N M

Note:

The same staging system is used after chemo and called PosText instead of PreText)
Even in non hepatoblastoma Liver Tumors, it is useful to describe all the above mentioned features)

3. Same reporting format to be used for MR imaging

RENAL MASS

CT SCAN OF CHEST, ABDOMEN AND PELVIS:

CT Scan for chest, abdomen and pelvis has been performed

Indication : Suspected Renal mass Prior Treatment : Comparison:

Primary Tumor: Laterality: Location in kidney Size Crossing midline : yes/ no

Morphology:

Any sign of rupture or tumoral bleed : Yes/No

Suspicion of perinephric spread : Yes/ No Infiltration of adjacent organs if any Ipsilateral Adrenal : Seen Separately /Not seen

Any obvious ureteric involvement : if seen-extent. Status of renal Sinus/PC system : Involved /Not involved

Renal vein and IVC status: if thrombus present : level-RV, infrahepatic, hepatic or suprahepatic IVC, right atrium Any anomalies or variants

Renal artery : any accessory artery

Contralateral kidney

Nodes Ascites or peritoneal haemorrhage Any peritoneal nodules seen

Liver: GB: Spleen Pancreas Pelvic organs GIT:

Lungs Pleura Mediastinal nodes Heart and great vessels:

Visualized Bones:

Impression: Likely Diagnosis Nodal disease Metastatic disease:

Neuroblastoma :

CT SCAN OF CHEST, ABDOMEN AND PELVIS:

CT Scan for chest, abdomen and pelvis has been performed Indication : Suspected NB Prior treatment MIBG/PET Scan available for reference

Primary Tumor: Site of origin Laterality: Size

IDRFs as per site of tumor:

Anatomic	Description of IDRF
region	
Multiple body	Ipsilateral tumor extension within two body compartments (ie, neck
compartments	andchest, chest and abdomen, or abdomen and pelvis)
Neck	Tumor encasing carotid artery, vertebral artery, and/or internal
	jugular vein
	Tumor extending to skull base
	Tumor compressing trachea
Cervico-	Tumor encasing brachial plexus roots
thoracic	Tumor encasing subclavian vessels, vertebral artery, and/or carotid
junction	artery
	Tumor compressing trachea
Thorax	Tumor encasing aorta and/or major branches
	Tumor compressing trachea and/or principal bronchi
	Lower mediastinal tumor infiltrating costovertebral junction between
	T9 and T12 vertebral levels (because of risk of injury to anterior
	spinal artery)
Thoraco-	Tumor encasing aorta and/or vena cava
abdominal	
Abdomen and	Tumor infiltrating porta hepatis and/or hepatoduodenal ligament
pelvis	Tumor encasing branches of superior mesenteric artery at
	mesenteric root
	Tumor encasing origin of celiac axis and/or origin of superior
	mesenteric artery
	Tumor invading one or both renal pedicles
	Tumor encasing aorta and/or vena cava

	Tumor encasing iliac vessels	
	Pelvic tumor crossing sciatic notch	
Intraspinal	Intraspinal tumor extension (whatever the location) provided that	
tumor	more than one-third of spinal canal in axial plane is invaded, the	
extension	perimedullaryleptomeningeal spaces are not visible, or the spinal	
	cord signal intensity is abnormal	
Infiltration of	Pericardium, diaphragm, kidney, liver, duodenopancreatic block, and	
adjacent	Mesentery	
organs and		
structures		

Kidneys Pelvic organs GIT

Lungs Pleura Mediastinal nodes Heart and great vessels:

Visualized Bones:

Retinoblastoma template

TECHNIQUE:

Multiplanar MR images of the orbits were acquired Pre and postcontrast injection. Screening MRI of the brain has also been performed.

Indication: Prior treatment Comparison:

FINDINGS: Abnormal Globe: Size- increased/decreased Deformation- present/absent Proptosis –present/ absent

Tumour: Size and uni/multifocal-Morphology-Location-

optic disc involvement Retinal detachment: present/absent, if present any

Intraocular haemorrhage: present absent

Choroidal invasion: normal smooth choroidal enhancement-present/absent If absent- focal choroidal thinning / reduced enhancement/ focal thickening

Optic nerve involvement: If involved, length of involvement

Optic pathway- chiasma, optic tracts

Extra-scleral spread : present /absent

Other findings if any

Opposite eye: Normal/abnormal, if abnormal with tumour similar description of opposite eye.

Brain Para/Suprasellar region: Pineal gland: Leptomeningeal enhancement: Any focal brain lesion

Others:

Conclusion

References:

- 1. Rauschecker, A.M., Patel, C.V., Yeom, K.W. et al. High-resolution MR imaging of the orbit in patients with retinoblastoma. Radiographics. 2012; 32: 1307–1326
- de Graaf, Pim et al. "Guidelines for imaging retinoblastoma: imaging principles and MRI standardization." Pediatric radiology vol. 42,1 (2012): 2-14. doi:10.1007/s00247-011-2201-5